GebraBit

TSL25721 sensor project with STM32F303 microcontroller series

متن سربرگ خود را وارد کنید

TSL25721 gebrabit project

TSL25721 sensor project with STM32F303 microcontroller series

TSL25721 gebrabit project
  1. Home
  2. »
  3. Projects
  4. »
  5. TSL25721 sensor project with STM32F303 microcontroller series

What's the purpose of this project?

In this section, we are going to launch the TSL25721 sensor using ARM microcontroller, STM32F series. In order to use more conveniently and optimally in this project, we use two ready modules GB613EN and GebraBit STM32F303. These two modules contain the minimum necessary elements of the TSL25721 sensor and the STM32F microcontroller, which are provided by the GebraBit team to facilitate the work.

What are we going to learn in this tutorial?

In this tutorial, in addition to setting up and using the TSL25721 sensor, you will get to know all the TSL25721 sensor registers, how to set the various parts of the STM32 microcontroller to set up this sensor using the I2C protocol, how to use the GB613EN module specific library and driver file. You will also learn how to declare functions and finally receive sensor data in the Keil compiler.   

What do we need to start this project?

As you probably know, we need some hardware and software to do this project. The titles of these hardware and software are provided to you in the table below and you can prepare/download by clicking on each of them and get ready to start.

Required hardware
Required software
Keil compiler 
 STM32CubeMX program
 ST-LINK/V2 programmer

First as shown in the image below, we connect the GebraBit TSL25721 module to the GebraBit STM32F303 module as follows:

Note: Considering that the PA14 pin of the GebraBit STM32F303 microcontroller module is used to program the microcontroller, the I2C setting on the PA14 and PA15 pins is not possible in this version, so the GebraBit TSL25721 module cannot be placed as a pin to pin on the GebraBit STM32F303 microcontroller module.

Finally, we will see the values of CH0, CH1 and ALS in Real Time in the “Watch1” window of the Keil compiler in the “Debug Session” mode.

STM32CubeMX settings

In the following, we review the settings related to each of the “I2C”, “RCC”, “Debug”, and “Clock” sections in the STM32F303 microcontroller to develop the GebraBit TSL25721 module.

RCC settings

Due to the presence of “8Mhz” crystal in the GebraBit STM32F303 module, we select the “external clock” in the “RCC” section:

Debug & Programming settings

Regarding the access to “SWCLK” and “SWDIO” pins in the GebraBit STM32F303 module, to reduce the number of pins during “Debug & Programming”, in the “SYS” block, we select the “Serial Wire” option in the “Debug” section:

I2C settings

To communicate with the GebraBit STM32F303 module through I2C, select the Standard Mode with a speed of 100khz and select PB8 and PB9 pins as SCL and SDA:

According to the sensor data sheet, the settings of the I2C parameters in the “Parameter Settings” section will be set as shown in the above image.

Clock settings

The “clock” settings for each part of the STM32F303 microcontroller in this code, are as follows:

Project Manager settings

“Project Manager” settings are as follows, here we have used “MDK-ARM” version “5.32” compiler:

After completing all the above settings, we can develop our code easily just by one click on “GENERATE CODE” and adding the TSL25721 library and driver (provided by GebraBit).

You can download the “STM32Cube MX”, “library”, “driver” and KEIL project at the end of this tutorial.   

TSL25721 library and driver

In addition to the modular design of various sensors and ICs, GebraBit tries to provide variety of structured and hardware-independent libraries in C language for the ease of users in setting up and developing software.

For this purpose, after preparing each GebraBit module, the users can refer to the “tutorial” section of the desired module and download the dedicated library, which contains the “ .h” and “  .c” file (Header and Source) and a sample training program under “GebraBit STM32F303”, “GebraBit ATMEGA32A” or “Arduino” development boards.

All the defined functions and structures in the library are commented in full detail and all the received parameters in the arguments of the functions and their return values, are briefly explained. Since the libraries are hardware independed, the user can easily add the library in any of their favorite compilers and develop it by desired microcontroller and development board.

GebraBit_TSL25721.h header file

In this file, based on the datasheet of the sensor or IC, all address registers, the values of each register are defined in the form of “Enumeration”. Also, the casing of the TSL25721 sensor and the configurations related to each of the TSL25721 sensor internal blocks are defined in the form of a “STRUCT” with the name GebraBit_TSL25721 Finally, in the Debug Session environment, all the configurations related to each block can be seen in real time.       

USER REGISTER MAP

The registry map or sensor commands are defined in this section:

				
					1. #define TSL25721_ADDRESS 			  0x39
 2. #define TSL25721_WRITE_ADDRESS 		  ((TSL25721_ADDRESS<<1)|0)
 3. #define TSL25721_READ_ADDRESS 		  ((TSL25721_ADDRESS<<1)|1)
 4. #define TSL25721_I2C		          &hi2c1		
 5. #define TSL25721_ENABLE               0x00
 6. #define TSL25721_ATIME  	          0x01
 7. #define TSL25721_WTIME 	              0x03
 8. #define TSL25721_AILTL 	              0x04
 9. #define TSL25721_AILTH 	              0x05
10. #define TSL25721_AIHTL                0x06
11. #define TSL25721_AIHTH 	              0x07
12. #define TSL25721_PERS 		          0x0C
13. #define TSL25721_CONFIG 	          0x0D
14. #define TSL25721_CONTROL 		      0x0F
15. #define TSL25721_ID 			      0x12
16. #define TSL25721_STATUS 	          0x13
17. #define TSL25721_C0DATA 	          0x14
18. #define TSL25721_C0DATAH 		      0x15
19. #define TSL25721_C1DATA 	          0x16
20. #define TSL25721_C1DATAH 		      0x17
21. #define TSL25721_ALS_INTERRUPT_CLEAR  0xE6 
22. #define GLASS_ATTENUATION             1.0f  ////// 1 Beacuse in open air
23.  

				
			

TSL25721_Ability Enum

This enum is used to activate and deactivate different parts of the sensor:

				
					typedef enum ALS_Mode 
{  
	STANDBY = 0 ,                      
	ACTIVE     
}LTR303ALS_ALS_Mode;

				
			

TSL25721_Reset_Status Enum

By using this enum, the sensor reset status is determined:

				
					typedef enum 
{  
	FAILED = 0 ,                      
	DONE     
}TSL25721 _Reset_Status;

				
			

TSL25721_ALS_Mode Enum

Using this enum, the working mode of the sensor is selected:

				
					1. typedef enum ALS_Mode 
2. {  
3. 	STANDBY = 0 ,                      
4. 	ACTIVE     
5. }TSL25721_ALS_Mode;
6.  

				
			

TSL25721_ALS_Gain Enum

The values of this enum are used to set the sensor gain:

				
					1. typedef enum ALS_Gain 
2. {
3.   ALS_GAIN_1X   = 0 ,
4.   ALS_GAIN_8X   = 1 ,
5.   ALS_GAIN_16X  = 2 ,
6.   ALS_GAIN_120X = 3
7. } TSL25721_ALS_Gain;
8.  

				
			

TSL25721_ Integration_Time Enum

The values of this enum are used to select the values of sensor data Integration time:

				
					1. typedef enum Integration_Time
2. {
3.   _2P73_mS_INTEGRATION_TIME = 0xFF ,
4.   _27P3_mS_INTEGRATION_TIME = 0xF6 ,
5.   _101_mS_INTEGRATION_TIME  = 0xDB ,
6.   _175_mS_INTEGRATION_TIME  = 0xC0 ,
7.   _699_mS_INTEGRATION_TIME  = 0x00
8. } TSL25721_Integration_Time;
9.  

				
			

TSL25721_ Measurement_Rate Enum

The measurement rate of sensor data values determined by this enum values:

				
					1. typedef enum Measurement_Rate
 2. {
 4.   ALS_MEASRATE_50_mS  ,
 5.   ALS_MEASRATE_100_mS ,
 6.   ALS_MEASRATE_200_mS ,
 7.   ALS_MEASRATE_500_mS ,
 8.   ALS_MEASRATE_1000_mS,
 9.   ALS_MEASRATE_2000_mS,
10. } TSL25721 _Measurement_Rate;
11.  

				
			

TSL25721_ Data_Status Enum

The values of this enum determine whether the read data is new or old values:

				
					typedef enum Data_Status 
{  
	OLD_DATA = 0 ,                      
	NEW_DATA     
}TSL25721 _Data_Status;

				
			

TSL25721_ Interrupt_Status Enum

The values of this enum are used to inform about the interruption in the sensor:

				
					1. typedef enum Interrupt_Status 
2. {  
3. 	INTERRUPT_INACTIVE = 0 ,                      
4. 	INTERRUPT_ACTIVE     
5. }TSL25721_Interrupt_Status;
6.  

				
			

TSL25721_Data_Valid Enum

The correctness of the sensor data is determined using the values of this enum:

				
					1. typedef enum Data_Valid 
2. {  
3. 	DATA_IS_INVALID = 0 ,                      
4. 	DATA_IS_VALID     
5. }TSL25721_Data_Valid;
6.  

				
			

TSL25721_Interrupt_Persist Enum

Using this enum, it is determined after how many repetitions of a mode, the interrupt should occur:

				
					1. typedef enum Interrupt_Persist
 2. {
 3.     EVERY_ALS_CYCLE,
 4.     CONSECUTIVE_1_ALS_VALUE_OUT_OF_THR_RANGE,
 5.     CONSECUTIVE_2_ALS_VALUE_OUT_OF_THR_RANGE,
 6.     CONSECUTIVE_3_ALS_VALUE_OUT_OF_THR_RANGE,
 7.     CONSECUTIVE_5_ALS_VALUE_OUT_OF_THR_RANGE,
 8.     CONSECUTIVE_10_ALS_VALUE_OUT_OF_THR_RANGE,
 9. 	CONSECUTIVE_15_ALS_VALUE_OUT_OF_THR_RANGE,
10. 	CONSECUTIVE_20_ALS_VALUE_OUT_OF_THR_RANGE,
11. 	CONSECUTIVE_25_ALS_VALUE_OUT_OF_THR_RANGE,
12. 	CONSECUTIVE_30_ALS_VALUE_OUT_OF_THR_RANGE,
13. 	CONSECUTIVE_35_ALS_VALUE_OUT_OF_THR_RANGE,
14. 	CONSECUTIVE_40_ALS_VALUE_OUT_OF_THR_RANGE,
15. 	CONSECUTIVE_45_ALS_VALUE_OUT_OF_THR_RANGE,
16. 	CONSECUTIVE_50_ALS_VALUE_OUT_OF_THR_RANGE,
17. 	CONSECUTIVE_55_ALS_VALUE_OUT_OF_THR_RANGE,
18. 	CONSECUTIVE_60_ALS_VALUE_OUT_OF_THR_RANGE,
19. } TSL25721_Interrupt_Persistence;
20.  

				
			

TSL25721 struct

All sensor properties, calibration coefficients and sensor data are defined in this “struct” and All the information and configuration implemented on the sensor are stored in this “structure” and you can see the changes in each part of the sensor in the “Debug Session” environment.

				
					1. typedef	struct TSL25721
 2. {
 3. 	  uint8_t                         Register_Cache;
 4. 	  uint8_t			              PART_ID;
 5. 	  TSL25721_Ability 				  ALS;
 6. 	  TSL25721_Ability                OSCILLATOR;
 7. 	  TSL25721_Ability 				  WAIT_TIMER;
 8. 	  TSL25721_Ability	              WAIT_LONG_12X;
 9. 	  float				              WAIT_TIME_mS;
10. 	  uint8_t						  WAIT_TIME;
11. 	  float				              WAIT_TIME_STEP;
12. 	  TSL25721_Ability                INTERRUPT;
13. 	  TSL25721_Ability			      SLEEP_AFTER_INTERRUPT;
14. 	  float							  INTEGRATION_TIME_mS;
15. 	  uint8_t						  INTEGRATION_TIME;
16. 	  float				              INTEGRATION_TIME_STEP;
17. 	  TSL25721_Ability                ALS_GAIN_0P16_SCALE;
18. 	  TSL25721_ALS_Gain               ALS_GAIN;
19. 	  float		 					  ALS_GAIN_VALUE;
20. 	  uint8_t			              STATUS_VALUE;
21.       TSL25721_Interrupt_Status		  INTERRRUPT_STATUS;
22.       TSL25721_Data_Valid             DATA;
23.       TSL25721_Interrupt_Persistence  INTERRUPT_PERSISTENCE;
24. 	  uint16_t                        INTERRUPT_LOW_THRESHOLD;
25. 	  uint16_t                        INTERRUPT_HIGH_THRESHOLD;
26. 	  uint8_t 						  ADC_DATA[ADC_DATA_BUFFER_SIZE];
27. 	  uint16_t                        ALS_DATA_CH0;//Reference to uint16_t where visible+IR data will be stored
28. 	  uint16_t               		  ALS_DATA_CH1;//Reference to uint16_t where IR-only data will be stored
29. 	  float      					  COUNTER_PER_LUX;
30. 	  double 			              ALS_LUX;
31. }GebraBit_TSL25721;
32.  

				
			

Declaration of functions

At the end of this file, all the functions for reading and writing in TSL25721 registers, sensor configuration and receiving data from the sensor are declared:

				
					1. extern void GB_TSL25721_Read_Reg_Data(uint8_t regAddr,  uint8_t *data)	;
 2. extern void GB_TSL25721_Burst_Read(uint8_t regAddr,  uint8_t *data, uint16_t byteQuantity);
 3. extern void GB_TSL25721_Read_Reg_Bits (uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t* data);	
 4. extern void GB_TSL25721_Write_Command( uint8_t cmd);
 5. extern void GB_TSL25721_Write_Reg_Data(uint8_t regAddr,  uint8_t data)	;
 6. extern void GB_TSL25721_Burst_Write(uint8_t regAddr,  uint8_t *data, uint16_t byteQuantity)								;
 7. extern void GB_TSL25721_Write_Reg_Bits(uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t data);
 8. /********************************************************
 9.  *       Declare TSL25721 Configuration Functions         *
10.  ********************************************************/
11. extern void GB_TSL25721_Internal_Oscillator ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability osc )  ;
12. extern void GB_TSL25721_ALS ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability als )  ;
13. extern void GB_TSL25721_Interrupt ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability intr )  ;
14. extern void GB_TSL25721_Clear_Interrupt ( GebraBit_TSL25721 * TSL25721 )  ;
15. extern void GB_TSL25721_Sleep_After_Interrupt ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability intafs )  ;
16. extern void GB_TSL25721_Wait_Timer ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability timer ) ;
17. extern void GB_TSL25721_Integration_Time  (GebraBit_TSL25721 * TSL25721 ,float time ) ;
18. extern void GB_TSL25721_Wait_Long_12x ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability wlong )  ;
19. extern void GB_TSL25721_Check_Wait_Long_12x ( GebraBit_TSL25721 * TSL25721  )   ;
20. extern void GB_TSL25721_Set_Wait_Time ( GebraBit_TSL25721 * TSL25721 , float wait  );
21. extern void GB_TSL25721_ALS_Gain_0p16_Scale ( GebraBit_TSL25721 * TSL25721 , TSL25721_Ability scale )  ;
22. extern void GB_TSL25721_Check_ALS_Gain_0p16_Scale( GebraBit_TSL25721 * TSL25721  ) ;
23. extern void GB_TSL25721_ALS_Gain ( GebraBit_TSL25721 * TSL25721 , TSL25721_ALS_Gain gain ); 
24. extern void GB_TSL25721_Read_Part_ID ( GebraBit_TSL25721 * TSL25721  ); 
25. extern void GB_TSL25721_Read_STATUS ( GebraBit_TSL25721 * TSL25721 ) ;
26. extern void GB_TSL25721_Interrupt_Persistence ( GebraBit_TSL25721 * TSL25721 , TSL25721_Interrupt_Persistence persist ) ;
27. extern void GB_TSL25721_Interrupt_Upper_Limitation ( GebraBit_TSL25721 * TSL25721 , uint16_t limit );
28. extern void GB_TSL25721_Interrupt_Lower_Limitation ( GebraBit_TSL25721 * TSL25721 , uint16_t limit )  ;
29. extern void GB_TSL25721_initialize( GebraBit_TSL25721 * TSL25721 )  ;
30. extern void GB_TSL25721_Configuration(GebraBit_TSL25721 * TSL25721)  ;
31. extern void GB_TSL25721_Read_CH0_CH1_Raw_Data(GebraBit_TSL25721 * TSL25721);
32. extern void GB_TSL25721_Lux_Reading(GebraBit_TSL25721 * TSL25721);
33. extern void GB_TSL25721_Get_Data(GebraBit_TSL25721 * TSL25721);
34.  

				
			

GebraBit_TSL25721.c source file

In this file, which is written in C language, all the functions are commented in full detail, and all the parameters received in the arguments of the functions and their return values are clearly explained so we confine to these explanations and invite users to check this file directly for more information.

Sample program in Keil

After making the Keil project by STM32CubeMX and adding the “GebraBit_TSL25721.c” library provided by GebraBit, we will examine the “main .c” file of the sample tutorial and view the output of the GebraBit_TSL25721 module in the “watch” part in the Keil compiler “Debugging” environment.

Description of “main.c” file

Enums and functions required by GebraBit TSL25721 module have been added to the structures. In the next part, a variable named TSL25721_Module of the GebraBit_TSL25721 structure type (this structure is in the GebraBit_TSL25721 header and is explained in the GebraBit_TSL25721 library description section) is defined for the configuration of the GebraBit TSL25721 module:  

				
					/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_TSL25721  TSL25721 _Module;
/* USER CODE END PTD */

				
			

In the next part of the written code, using the GB_TSL25721_initialize (&TSL25721 _Module) and GB_TSL25721_Configuration (&TSL25721_Module) functions, we set the GebraBit TSL25721 module and finally, in the while part of the program, the data is read from the sensor and the ALS and CLEAR values are continuously received:  

				
					1. /* USER CODE BEGIN 2 */
 2. 	GB_TSL25721 _initialize(&TSL25721 _Module);
 3. 	GB_TSL25721 _Configuration(&TSL25721 _Module);
 4.   /* USER CODE END 2 */
 5.  
 6.   /* Infinite loop */
 7.   /* USER CODE BEGIN WHILE */
 8.   while (1)
 9.   {
10.     /* USER CODE END WHILE */
11.  
12.     /* USER CODE BEGIN 3 */
13. 		GB_TSL25721 _Get_Data(&TSL25721 _Module);
14.   }
15.   /* USER CODE END 3 */
16. }
17.  

				
			

The “main.c” file code text:

				
					   1. /* USER CODE BEGIN Header */
  2. /*
  3.  * ________________________________________________________________________________________________________
  4.  * Copyright (c) 2020 GebraBit Inc. All rights reserved.
  5.  *
  6.  * This software, related documentation and any modifications thereto (collectively “Software”) is subject
  7.  * to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
  8.  * and other intellectual property rights laws. 
  9.  *
 10.  * GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
 11.  * and any use, reproduction, disclosure or distribution of the Software without an express license agreement
 12.  * from GebraBit is strictly prohibited.
 13.  
 14.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
 15.  * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN  
 16.  * NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, 
 17.  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 18.  * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 19.  * OF THE SOFTWARE.
 20.  * ________________________________________________________________________________________________________
 21.  */
 22. /**
 23.   ******************************************************************************
 24.   * @file           : main.c
 25.   * @brief          : Main program body
 26. 	* @Author       	: Mehrdad Zeinali
 27.   ******************************************************************************
 28.   * @attention
 29.   *
 30.   * Copyright (c) 2022 STMicroelectronics.
 31.   * All rights reserved.
 32.   *
 33.   * This software is licensed under terms that can be found in the LICENSE file
 34.   * in the root directory of this software component.
 35.   * If no LICENSE file comes with this software, it is provided AS-IS.
 36.   *
 37.   ******************************************************************************
 38.   */
 39. /* USER CODE END Header */
 40. /* Includes ------------------------------------------------------------------*/
 41. #include "main.h"
 42. #include "i2c.h"
 43. #include "gpio.h"
 44.  
 45. /* Private includes ----------------------------------------------------------*/
 46. /* USER CODE BEGIN Includes */
 47. #include "GebraBit_TSL25721 .h"
 48. /* USER CODE END Includes */
 49.  
 50. /* Private typedef -----------------------------------------------------------*/
 51. /* USER CODE BEGIN PTD */
 52. GebraBit_TSL25721  TSL25721 _Module;
 53. /* USER CODE END PTD */
 54.  
 55. /* Private define ------------------------------------------------------------*/
 56. /* USER CODE BEGIN PD */
 57. /* USER CODE END PD */
 58.  
 59. /* Private macro -------------------------------------------------------------*/
 60. /* USER CODE BEGIN PM */
 61.  
 62. /* USER CODE END PM */
 63.  
 64. /* Private variables ---------------------------------------------------------*/
 65.  
 66. /* USER CODE BEGIN PV */
 67.  
 68. /* USER CODE END PV */
 69.  
 70. /* Private function prototypes -----------------------------------------------*/
 71. void SystemClock_Config(void);
 72. /* USER CODE BEGIN PFP */
 73.  
 74. /* USER CODE END PFP */
 75.  
 76. /* Private user code ---------------------------------------------------------*/
 77. /* USER CODE BEGIN 0 */
 78.  
 79. /* USER CODE END 0 */
 80.  
 81. /**
 82.   * @brief  The application entry point.
 83.   * @retval int
 84.   */
 85. int main(void)
 86. {
 87.   /* USER CODE BEGIN 1 */
 88.  
 89.   /* USER CODE END 1 */
 90.  
 91.   /* MCU Configuration--------------------------------------------------------*/
 92.  
 93.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 94.   HAL_Init();
 95.  
 96.   /* USER CODE BEGIN Init */
 97.  
 98.   /* USER CODE END Init */
 99.  
100.   /* Configure the system clock */
101.   SystemClock_Config();
102.  
103.   /* USER CODE BEGIN SysInit */
104.  
105.   /* USER CODE END SysInit */
106.  
107.   /* Initialize all configured peripherals */
108.   MX_GPIO_Init();
109.   MX_I2C1_Init();
110.   /* USER CODE BEGIN 2 */
111.   GB_TSL25721 _initialize(&TSL25721 _Module);
112. 	GB_TSL25721 _Configuration(&TSL25721 _Module);
113.   /* USER CODE END 2 */
114.  
115.   /* Infinite loop */
116.   /* USER CODE BEGIN WHILE */
117.   while (1)
118.   {
119.     /* USER CODE END WHILE */
120.     GB_TSL25721 _Get_Data(&TSL25721 _Module);
121.     /* USER CODE BEGIN 3 */
122.   }
123.   /* USER CODE END 3 */
124. }
125.  
126. /**
127.   * @brief System Clock Configuration
128.   * @retval None
129.   */
130. void SystemClock_Config(void)
131. {
132.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
133.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
134.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
135.  
136.   /** Initializes the RCC Oscillators according to the specified parameters
137.   * in the RCC_OscInitTypeDef structure.
138.   */
139.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
140.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
141.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
142.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
143.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
144.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
145.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
146.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
147.   {
148.     Error_Handler();
149.   }
150.  
151.   /** Initializes the CPU, AHB and APB buses clocks
152.   */
153.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
154.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
155.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
156.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
157.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
158.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
159.  
160.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
161.   {
162.     Error_Handler();
163.   }
164.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
165.   PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
166.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
167.   {
168.     Error_Handler();
169.   }
170. }
171.  
172. /* USER CODE BEGIN 4 */
173.  
174. /* USER CODE END 4 */
175.  
176. /**
177.   * @brief  This function is executed in case of error occurrence.
178.   * @retval None
179.   */
180. void Error_Handler(void)
181. {
182.   /* USER CODE BEGIN Error_Handler_Debug */
183.   /* User can add his own implementation to report the HAL error return state */
184.   __disable_irq();
185.   while (1)
186.   {
187.   }
188.   /* USER CODE END Error_Handler_Debug */
189. }
190.  
191. #ifdef  USE_FULL_ASSERT
192. /**
193.   * @brief  Reports the name of the source file and the source line number
194.   *         where the assert_param error has occurred.
195.   * @param  file: pointer to the source file name
196.   * @param  line: assert_param error line source number
197.   * @retval None
198.   */
199. void assert_failed(uint8_t *file, uint32_t line)
200. {
201.   /* USER CODE BEGIN 6 */
202.   /* User can add his own implementation to report the file name and line number,
203.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
204.   /* USER CODE END 6 */
205. }
206. #endif /* USE_FULL_ASSERT */
207.  

				
			

Program output

After generating the Keil project using STM32CubeMX and adding the library, we connect the STLINK V2 programmer to the GebraBit STM32F303 using the STLINKV2 adapter:

STLINKV2 adapter:

By connecting the STLINK V2 programmer to the GebraBit STM32F303, there is no need to apply power to the GebraBit STM32F303 and GebraBit TSL25721 modules, because they receive their supply voltage directly from the STLINK V2 programmer.

Finally, enter the “Debug” mode and by adding the “TSL25721_Module” to the “watch” window and running the program, we can see the changes in the Clear and ALS values of the GebraBit TSL25721 module:

In the following, you can download the “GebraBit TSL25721 module setup project” using the GebraBit STM32F303 module in the Keil environment, the “STM32CubeMX file”, the schematic of the modules and the “TSL25721 datasheet”.  

Program output video

این مقاله را با دوستانتان به اشتراک بگذارید!

Leave a Reply

Your email address will not be published. Required fields are marked *

Shopping cart
Start typing to see posts you are looking for.

Sign in

No account yet?