GebraBit

APDS-9306 sensor project with STM32F303 microcontroller series

متن سربرگ خود را وارد کنید

LTR303 gebrabit project

APDS-9306 sensor project with STM32F303 microcontroller series

LTR303 gebrabit project
  1. Home
  2. »
  3. Projects
  4. »
  5. APDS-9306 sensor project with STM32F303 microcontroller series

What's the purpose of this project?

In this section, we are going to launch the APDS-9306 sensor using ARM microcontroller, STM32F series. In order to use more conveniently and optimally in this project, we use two ready modules GB609EN and GebraBit STM32F303. These two modules contain the minimum necessary elements of the APDS-9306 sensor and the STM32F microcontroller, which are provided by the GebraBit team to facilitate the work.

What are we going to learn in this tutorial?

In this tutorial, in addition to setting up and using the APDS-9306 sensor, you will get to know all the APDS-9306 sensor registers, how to set the various parts of the STM32 microcontroller to set up this sensor using the I2C protocol, how to use the GB609EN module specific library and driver file. You will also learn how to declare functions and finally receive sensor data in the Keil compiler.  

What do we need to start this project?

As you probably know, we need some hardware and software to do this project. The titles of these hardware and software are provided to you in the table below and you can prepare/download by clicking on each of them and get ready to start.

Required hardware
Required software
Keil compiler 
 STM32CubeMX program
 ST-LINK/V2 programmer

First as shown in the image below, we connect the GebraBit APDS-9306 module to the GebraBit STM32F303 module as follows:

Note: Considering that the PA14 pin of the GebraBit STM32F303 microcontroller module is used to program the microcontroller, the I2C setting on the PA14 and PA15 pins is not possible in this version, so the GebraBit APDS-9306 module cannot be placed as a pin to pin on the GebraBit STM32F303 microcontroller module.

Finally, we will see the values of Clear and ALS in Real Time in the “Watch1” window of the Keil compiler in the “Debug Session” mode.

STM32CubeMX settings

In the following, we review the settings related to each of the “I2C”, “RCC”, “Debug”, and “Clock” sections in the STM32F303 microcontroller to develop the GebraBit APDS-9306 module.

RCC settings

Due to the presence of “8Mhz” crystal in the GebraBit STM32F303 module, we select the “external clock” in the “RCC” section:

Debug & Programming settings

Regarding the access to “SWCLK” and “SWDIO” pins in the GebraBit STM32F303 module, to reduce the number of pins during “Debug & Programming”, in the “SYS” block, we select the “Serial Wire” option in the “Debug” section:

I2C settings

To communicate with the GebraBit STM32F303 module through I2C, select the Standard Mode with a speed of 100khz and select PB8 and PB9 pins as SCL and SDA:

According to the sensor data sheet, the settings of the I2C parameters in the “Parameter Settings” section will be set as shown in the above image.

Clock settings

The “clock” settings for each part of the STM32F303 microcontroller in this code, are as follows:

Project Manager settings

“Project Manager” settings are as follows, here we have used “MDK-ARM” version “5.32” compiler:

After completing all the above settings, we can develop our code easily just by one click on “GENERATE CODE” and adding the APDS-9306 library and driver (provided by GebraBit).

You can download the “STM32Cube MX”, “library”, “driver” and KEIL project at the end of this tutorial.   

APDS-9306 library and driver

In addition to the modular design of various sensors and ICs, GebraBit tries to provide variety of structured and hardware-independent libraries in C language for the ease of users in setting up and developing software.

For this purpose, after preparing each GebraBit module, the users can refer to the “tutorial” section of the desired module and download the dedicated library, which contains the “ .h” and “  .c” file (Header and Source) and a sample training program under “GebraBit STM32F303”, “GebraBit ATMEGA32A” or “Arduino” development boards.

All the defined functions and structures in the library are commented in full detail and all the received parameters in the arguments of the functions and their return values, are briefly explained. Since the libraries are hardware independed, the user can easily add the library in any of their favorite compilers and develop it by desired microcontroller and development board.

GebraBit_APDS-9306.h header file

In this file, based on the datasheet of the sensor or IC, all address registers, the values of each register are defined in the form of “Enumeration”. Also, the casing of the SHT35 sensor and the configurations related to each of the APDS-9306 sensor internal blocks are defined in the form of a “STRUCT” with the name GebraBit_APDS-9306 Finally, in the Debug Session environment, all the configurations related to each block can be seen in real time.        

USER REGISTER MAP

The registry map or sensor commands are defined in this section:

				
					1. #define APDS9306_MAIN_CTRL  				0x00
 2. #define APDS9306_ALS_MEAS_RATE  			0x04
 3. #define APDS9306_ALS_GAIN 					0x05
 4. #define APDS9306_PART_ID 					0x06
 5. #define APDS9306_MAIN_STATUS 				0x07
 6. #define APDS9306_CLEAR_DATA_0 				0x0A
 7. #define APDS9306_CLEAR_DATA_1 				0x0B
 8. #define APDS9306_CLEAR_DATA_2 				0x0C
 9. #define APDS9306_ALS_DATA_0 				0x0D
10. #define APDS9306_ALS_DATA_1 				0x0E
11. #define APDS9306_ALS_DATA_2 				0x0F
12. #define APDS9306_INT_CFG 					0x19
13. #define APDS9306_INT_PERSISTENCE 			0x1A
14. #define APDS9306_ALS_THRES_UP_0 			0x21
15. #define APDS9306_ALS_THRES_UP_1 			0x22
16. #define APDS9306_ALS_THRES_UP_2 			0x23
17. #define APDS9306_ALS_THRES_LOW_0 			0x24
18. #define APDS9306_ALS_THRES_LOW_1 			0x25
19. #define APDS9306_ALS_THRES_LOW_2 			0x26
20. #define APDS9306_ALS_THRES_VAR 				0x27
21. #define APDS9306_I2C		                &hi2c1	
22. #define APDS9306_ADDRESS 					0x52
23. #define APDS9306_WRITE_ADDRESS 			    ((APDS9306_ADDRESS<<1)|0)
24. #define APDS9306_READ_ADDRESS 				((APDS9306_ADDRESS<<1)|1)
25.  

				
			

APDS-9306_Ability Enum

This enum is used to activate and deactivate different parts of the sensor:

				
					1. typedef enum Ability
2. {  
3. 	Disable = 0 ,                      
4. 	Enable     
5. }APDS9306_Ability;   
6.  

				
			

APDS-9306_ALS_Gain Enum

The values of this enum are used to set the sensor gain:

				
					1. typedef enum ALS_Gain 
2. {
3.   ALS_GAIN_1X  = 0,
4.   ALS_GAIN_3X  = 1,
5.   ALS_GAIN_6X  = 2,
6.   ALS_GAIN_9X  = 3,
7.   ALS_GAIN_18X = 4,
8. } APDS9306_ALS_Gain;
9.  

				
			

APDS-9306_ Interrupt_Channel Enum

To set the interruption source in the sensor, the values of this enum are used:

				
					1. typedef enum Interrupt_Channel 
2. {  
3. 	CLEAR_CHANNEL = 0 ,                      
4. 	ALS_CHANNEL     
5. }APDS9306_Interrupt_Channel;

				
			

APDS-9306_Resolution Enum

The values of this enum are used to select the sensor resolution:

				
					1. typedef enum Resolution
 2. {
 3.   _20_BIT_400_mS,
 4.   _19_BIT_200_mS,
 5.   _18_BIT_100_mS,
 6.   _17_BIT_50_mS ,
 7.   _16_BIT_25_mS ,
 8.   _13_BIT_3P125_mS
 9. } APDS9306_ALS_Resolution;
10.  

				
			

APDS-9306_ Measurement_Rate Enum

The values of this enum are used to define the measurement rate of sensor data values:

				
					1. typedef enum Measurement_Rate
 2. {
 3.   ALS_MEASRATE_25_mS,
 4.   ALS_MEASRATE_50_mS,
 5.   ALS_MEASRATE_100_mS,
 6.   ALS_MEASRATE_200_mS,
 7.   ALS_MEASRATE_500_mS,
 8.   ALS_MEASRATE_1000_mS,
 9.   ALS_MEASRATE_2000_mS,
10. } APDS9306_Measurement_Rate;
11.  

				
			

APDS-9306_Data_Status Enum

The values of this Enum determine whether the read data is new or old values:

				
					typedef enum Data_Status 
{  
	OLD_DATA = 0 ,                      
	NEW_DATA     
}APDS-9306_Data_Status;

				
			

APDS-9306_ Interrupt_Status Enum

The values of this Enum are used to inform about the interruption in the sensor:

				
					1. typedef enum Interrupt_Status 
2. {  
3. 	INTERRUPT_NOT_FULFILLED = 0 ,                      
4. 	INTERRUPT_FULFILLED     
5. }APDS9306_Interrupt_Status;
6.  

				
			

APDS-9306_Interrupt_Mode Enum

Using this enum, the sensor interrupt type is selected:

				
					1. typedef enum Interrupt_Mode 
2. {  
3. 	ALS_THRESHOLD_INTERRUPT = 0,                      
4. 	ALS_VARIATION_INTERRUPT     
5. }APDS9306_Interrupt_Mode;
6.  

				
			

APDS-9306_Power_Status Enum

The occurrence of an error in sensor supply power is determined using the values of this enum.

				
					1. typedef enum Power_Status 
2. {  
3. 	NO_POWER_ISSUE = 0 ,                      
4. 	POWER_ISSUE     
5. }APDS9306_Power_Status;
6.  

				
			

APDS-9306_Interrupt_Persist Enum

Using this enum, it is determined after how many repetitions of a mode, the interrupt should occur:

				
					typedef enum Interrupt_Persist
{
EVERY_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_2_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_3_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_4_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_5_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_6_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_7_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_8_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_9_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_10_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_11_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_12_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_13_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_14_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_15_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_16_ALS_VALUE_OUT_OF_THR_RANGE,
} APDS-9306_Interrupt_Persist;

				
			

APDS-9306_Reset_Status Enum

By using this enum, the sensor reset status is determined:

				
					typedef enum 
{  
	FAILED = 0 ,                      
	DONE     
}APDS-9306_Reset_Status;

				
			

APDS-9306 struct

All sensor properties, calibration coefficients and sensor data are defined in this “struct” and All the information and configuration implemented on the sensor are stored in this “structure” and you can see the changes in each part of the sensor in the “Debug Session” environment.

				
					1. typedef	struct APDS9306
 2. {
 3. 	  uint8_t                         Register_Cache;
 4. 	  uint8_t						  PART_ID;
 5. 	  APDS9306_Reset_Status			  RESET;
 6. 	  APDS9306_Ability                ALS;
 7. 	  APDS9306_ALS_Gain               ALS_GAIN;
 8. 	  float				              ALS_GAIN_VALUE;
 9. 	  APDS9306_Measurement_Rate       MEASUREMENT_RATE;
10. 	  APDS9306_ALS_Resolution         ALS_RESOLUTION;
11. 	  float							  ALS_RESOLUTION_TIME;
12.       APDS9306_Power_Status           POWER_STATUS;
13. 	  APDS9306_Data_Status            DATA;
14. 	  APDS9306_Ability                INTERRUPT;
15.       APDS9306_Interrupt_Channel      INTERRUPT_CHANNEL;
16. 	  APDS9306_Interrupt_Mode         INTERRUPT_MODE;
17.       APDS9306_Interrupt_Persist      INTERRUPT_PERSIST;
18. 	  APDS9306_Interrupt_Status		  INTERRRUPT_STATUS;
19. 	  uint32_t                        INTERRUPT_UPPER_THRESHOLD;
20. 	  uint32_t                        INTERRUPT_LOWER_THRESHOLD;
21. 	  uint8_t 						  REGISTER_DATA[REGISTER_DATA_BUFFER_SIZE];
22. 	  uint32_t               		  CLEAR_DATA;
23. 	  uint32_t               		  ALS_DATA;
24.       float 						  LUMINOSITY;
25. }GebraBit_APDS9306;
26.  

				
			

Declaration of functions

At the end of this file, all the functions for reading and writing in APDS-9306 registers, sensor configuration and receiving data from the sensor are declared:

				
					1. extern void GB_APDS9306_Read_Reg_Data(uint8_t regAddr,  uint8_t *data)	;
 2. extern void GB_APDS9306_Burst_Read(uint8_t regAddr,  uint8_t *data, uint16_t byteQuantity);
 3. extern void GB_APDS9306_Read_Reg_Bits (uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t* data);	
 4. extern void GB_APDS9306_Write_Command( uint8_t cmd);
 5. extern void GB_APDS9306_Write_Reg_Data(uint8_t regAddr,  uint8_t data)	;
 6. extern void GB_APDS9306_Burst_Write(uint8_t regAddr,  uint8_t *data, uint16_t byteQuantity)								;
 7. extern void GB_APDS9306_Write_Reg_Bits(uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t data);
 8. /********************************************************
 9.  *       Declare APDS9306 Configuration Functions         *
10.  ********************************************************/
11. extern void GB_APDS9306_Soft_Reset ( GebraBit_APDS9306 * APDS9306 )  ;
12. extern void GB_APDS9306_ALS ( GebraBit_APDS9306 * APDS9306 , APDS9306_Ability als );
13. extern void GB_APDS9306_ALS_Gain ( GebraBit_APDS9306 * APDS9306 , APDS9306_ALS_Gain gain )  ;
14. extern void GB_APDS9306_Measurement_Repeat_Rate ( GebraBit_APDS9306 * APDS9306 , APDS9306_Measurement_Rate rate )  ;
15. extern void GB_APDS9306_ALS_Resolution ( GebraBit_APDS9306 * APDS9306 , APDS9306_ALS_Resolution res ) ;
16. extern void GB_APDS9306_Read_Part_ID ( GebraBit_APDS9306 * APDS9306  )  ;
17. extern void GB_APDS9306_Read_STATUS ( GebraBit_APDS9306 * APDS9306 )   ;
18. extern void GB_APDS9306_Interrupt_Channel ( GebraBit_APDS9306 * APDS9306 , APDS9306_Interrupt_Channel intr );
19. extern void GB_APDS9306_Interrupt_Mode ( GebraBit_APDS9306 * APDS9306 , APDS9306_Interrupt_Mode mode )  ;
20. extern void GB_APDS9306_Interrupt( GebraBit_APDS9306 * APDS9306 , APDS9306_Ability intpt )  ;
21. extern void GB_APDS9306_Interrupt_Persist ( GebraBit_APDS9306 * APDS9306 , APDS9306_Interrupt_Persist persist )  ;
22. extern void GB_APDS9306_Interrupt_Upper_Threshold ( GebraBit_APDS9306 * APDS9306 , uint32_t upthr ) ;
23. extern void GB_APDS9306_Interrupt_Lower_Threshold ( GebraBit_APDS9306 * APDS9306 , uint16_t lothr )  ;
24. extern void GB_APDS9306_initialize( GebraBit_APDS9306 * APDS9306 )  ;
25. extern void GB_APDS9306_Configuration(GebraBit_APDS9306 * APDS9306)  ;
26. extern void GB_APDS9306_Get_Raw_Data(GebraBit_APDS9306 * APDS9306);
27. extern void GB_APDS9306_Luminosity_Reading(GebraBit_APDS9306 * APDS9306);
28. extern void GB_APDS9306_Get_Data(GebraBit_APDS9306 * APDS9306);
29.  

				
			

GebraBit_APDS-9306.c source file

In this file, which is written in C language, all the functions are commented in full detail, and all the parameters received in the arguments of the functions and their return values are clearly explained so we confine to these explanations and invite users to check this file directly for more information.

Sample program in Keil

After making the Keil project by STM32CubeMX and adding the “GebraBit_APDS-9306.c” library provided by GebraBit, we will examine the “main .c” file of the sample tutorial and view the output of the GebraBit_APDS-9306 module in the “watch” part in the Keil compiler “Debugging” environment.

Description of “main.c” file

Enums and functions required by GebraBit APDS-9306 module have been added to the structures. In the next part, a variable named APDS-9306_Module of the GebraBit_ APDS-9306 structure type (this structure is in the GebraBit_APDS-9306 header and is explained in the GebraBit_APDS-9306 library description section) is defined for the configuration of the GebraBit APDS-9306 module:   

				
					/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_APDS9306 APDS9306_Module;
/* USER CODE END PTD */

				
			

In the next part of the written code, using the GB_ APDS-9306_initialize (&APDS-9306_Module) and GB_ APDS-9306_Configuration (&APDS-9306_Module) functions, we set the GebraBit APDS-9306 module and finally, in the while part of the program, the data is read from the sensor and the ALS and Clear values are continuously received:

				
					1. /* USER CODE BEGIN 2 */
 2. 	GB_APDS9306_initialize(&APDS9306_Module);
 3. 	GB_APDS9306_Configuration(&APDS9306_Module);
 4.   /* USER CODE END 2 */
 5.  
 6.   /* Infinite loop */
 7.   /* USER CODE BEGIN WHILE */
 8.   while (1)
 9.   {
10.     /* USER CODE END WHILE */
11.  
12.     /* USER CODE BEGIN 3 */
13. 		GB_APDS9306_Get_Data(&APDS9306_Module);
14.   }
15.   /* USER CODE END 3 */
16. }
17.  

				
			

The “main.c” file code text:

				
					   1. /* USER CODE BEGIN Header */
  2. /*
  3.  * ________________________________________________________________________________________________________
  4.  * Copyright (c) 2020 GebraBit Inc. All rights reserved.
  5.  *
  6.  * This software, related documentation and any modifications thereto (collectively “Software”) is subject
  7.  * to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
  8.  * and other intellectual property rights laws. 
  9.  *
 10.  * GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
 11.  * and any use, reproduction, disclosure or distribution of the Software without an express license agreement
 12.  * from GebraBit is strictly prohibited.
 13.  
 14.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
 15.  * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN  
 16.  * NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, 
 17.  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 18.  * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 19.  * OF THE SOFTWARE.
 20.  * ________________________________________________________________________________________________________
 21.  */
 22. /**
 23.   ******************************************************************************
 24.   * @file           : main.c
 25.   * @brief          : Main program body
 26. 	* @Author       	: Mehrdad Zeinali
 27.   ******************************************************************************
 28.   * @attention
 29.   *
 30.   * Copyright (c) 2022 STMicroelectronics.
 31.   * All rights reserved.
 32.   *
 33.   * This software is licensed under terms that can be found in the LICENSE file
 34.   * in the root directory of this software component.
 35.   * If no LICENSE file comes with this software, it is provided AS-IS.
 36.   *
 37.   ******************************************************************************
 38.   */
 39. /* USER CODE END Header */
 40. /* Includes ------------------------------------------------------------------*/
 41. #include "main.h"
 42. #include "i2c.h"
 43. #include "gpio.h"
 44.  
 45. /* Private includes ----------------------------------------------------------*/
 46. /* USER CODE BEGIN Includes */
 47. #include "GebraBit_APDS9306.h"
 48. /* USER CODE END Includes */
 49.  
 50. /* Private typedef -----------------------------------------------------------*/
 51. /* USER CODE BEGIN PTD */
 52. GebraBit_APDS9306 APDS9306_Module;
 53. /* USER CODE END PTD */
 54.  
 55. /* Private define ------------------------------------------------------------*/
 56. /* USER CODE BEGIN PD */
 57. /* USER CODE END PD */
 58.  
 59. /* Private macro -------------------------------------------------------------*/
 60. /* USER CODE BEGIN PM */
 61.  
 62. /* USER CODE END PM */
 63.  
 64. /* Private variables ---------------------------------------------------------*/
 65.  
 66. /* USER CODE BEGIN PV */
 67.  
 68. /* USER CODE END PV */
 69.  
 70. /* Private function prototypes -----------------------------------------------*/
 71. void SystemClock_Config(void);
 72. /* USER CODE BEGIN PFP */
 73.  
 74. /* USER CODE END PFP */
 75.  
 76. /* Private user code ---------------------------------------------------------*/
 77. /* USER CODE BEGIN 0 */
 78.  
 79. /* USER CODE END 0 */
 80.  
 81. /**
 82.   * @brief  The application entry point.
 83.   * @retval int
 84.   */
 85. int main(void)
 86. {
 87.   /* USER CODE BEGIN 1 */
 88.  
 89.   /* USER CODE END 1 */
 90.  
 91.   /* MCU Configuration--------------------------------------------------------*/
 92.  
 93.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 94.   HAL_Init();
 95.  
 96.   /* USER CODE BEGIN Init */
 97.  
 98.   /* USER CODE END Init */
 99.  
100.   /* Configure the system clock */
101.   SystemClock_Config();
102.  
103.   /* USER CODE BEGIN SysInit */
104.  
105.   /* USER CODE END SysInit */
106.  
107.   /* Initialize all configured peripherals */
108.   MX_GPIO_Init();
109.   MX_I2C1_Init();
110.   /* USER CODE BEGIN 2 */
111.   GB_APDS9306_initialize(&APDS9306_Module);
112. 	GB_APDS9306_Configuration(&APDS9306_Module);
113.   /* USER CODE END 2 */
114.  
115.   /* Infinite loop */
116.   /* USER CODE BEGIN WHILE */
117.   while (1)
118.   {
119.     /* USER CODE END WHILE */
120.     GB_APDS9306_Get_Data(&APDS9306_Module);
121.     /* USER CODE BEGIN 3 */
122.   }
123.   /* USER CODE END 3 */
124. }
125.  
126. /**
127.   * @brief System Clock Configuration
128.   * @retval None
129.   */
130. void SystemClock_Config(void)
131. {
132.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
133.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
134.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
135.  
136.   /** Initializes the RCC Oscillators according to the specified parameters
137.   * in the RCC_OscInitTypeDef structure.
138.   */
139.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
140.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
141.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
142.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
143.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
144.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
145.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
146.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
147.   {
148.     Error_Handler();
149.   }
150.  
151.   /** Initializes the CPU, AHB and APB buses clocks
152.   */
153.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
154.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
155.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
156.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
157.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
158.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
159.  
160.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
161.   {
162.     Error_Handler();
163.   }
164.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
165.   PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
166.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
167.   {
168.     Error_Handler();
169.   }
170. }
171.  
172. /* USER CODE BEGIN 4 */
173.  
174. /* USER CODE END 4 */
175.  
176. /**
177.   * @brief  This function is executed in case of error occurrence.
178.   * @retval None
179.   */
180. void Error_Handler(void)
181. {
182.   /* USER CODE BEGIN Error_Handler_Debug */
183.   /* User can add his own implementation to report the HAL error return state */
184.   __disable_irq();
185.   while (1)
186.   {
187.   }
188.   /* USER CODE END Error_Handler_Debug */
189. }
190.  
191. #ifdef  USE_FULL_ASSERT
192. /**
193.   * @brief  Reports the name of the source file and the source line number
194.   *         where the assert_param error has occurred.
195.   * @param  file: pointer to the source file name
196.   * @param  line: assert_param error line source number
197.   * @retval None
198.   */
199. void assert_failed(uint8_t *file, uint32_t line)
200. {
201.   /* USER CODE BEGIN 6 */
202.   /* User can add his own implementation to report the file name and line number,
203.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
204.   /* USER CODE END 6 */
205. }
206. #endif /* USE_FULL_ASSERT */
207.  

				
			

Program output

After generating the Keil project using STM32CubeMX and adding the library, we connect the STLINK V2 programmer to the GebraBit STM32F303 using the STLINKV2 adapter:

STLINKV2 adapter:

By connecting the STLINK V2 programmer to the GebraBit STM32F303, there is no need to apply power to the GebraBit STM32F303 and GebraBit APDS-9306 modules, because they receive their supply voltage directly from the STLINK V2 programmer.

Finally, enter the “Debug” mode and by adding the “APDS-9306_Module” to the “watch” window and running the program, we can see the changes in the IR and ALS values of the GebraBit APDS-9306 module:

In the following, you can download the “GebraBit APDS-9306 module setup project” using the GebraBit STM32F303 module in the Keil environment, the “STM32CubeMX file”, the schematic of the modules and the “APDS-9306 datasheet”.  

Program output video

این مقاله را با دوستانتان به اشتراک بگذارید!

Leave a Reply

Your email address will not be published. Required fields are marked *

Shopping cart
Start typing to see posts you are looking for.

Sign in

No account yet?