Home » فروشگاه » ماژول تشخیص باران GEBRABIT Rain Sensor

ماژول تشخیص باران GEBRABIT Rain Sensor

سنسور تشخیص باران

سنسور باران ابزاری است که برای تشخیص باران استفاده می شود. این سنسور از دو بخش تشکیل شده است، یک بخش تشخیص باران و دیگری بخش کنترل.
بخش باران با برخورد قطرات باران به این بخش، باران را تشخیص می دهد. این بخش از صفحات رسانایی که در قالب یک شبکه چیده شده اند تشکیل شده است. هنگامی که باران روی سنسور می‌بارد و قطرات باران به سنسور برخورد میکنند، مقاومت صفحات رسانا تغییر می‌کند، هر چه شدت بارندگی بیشتر باشد مقاومت کمتر می شود، بدین ترتیب با اندازه‌گیری تغییرات مقاومت، می‌توان شدت بارندگی را تعیین کرد.

بخش کنترل، داده های دریافتی از بخش تشخیص باران را پردازش کرده و بعد از سنجیدن این دیتاهای آنالوگ ، آنها را به دیتای دیجیتال تبدیل می کند.
این سنسورها در کارهای اتوماسیون مانند برف پاک کن شیشه جلو، بسته شدن اتوماتیک پنجره در صورت رعد و برق یا تنظیم دمای اتاق، در بخش کشاورزی برای برنامه ریزی آبیاری محصولات و غیره استفاده می شود.

ماژول GebraBit Rain Sensor ​

سنسور باران GEBRABIT با مجموعه ای از تریس‌های مسی قابل مشاهده، با هم به عنوان یک مقاومت متغیر (درست مانند یک پتانسیومتر) عمل می کند که مقاومت آن بر اساس میزان آب روی سطح آن تغییر میکند. این سنسور یک دوقطبی مقاومتی است که فقط بر پایه رطوبت بوده و مقاومت را نشان می دهد. به عنوان مثال زمانی که بخش تشخیص باران سنسور خشک است مقاومت بیشتر و در حالت مرطوب مقاومت کمتری از خود نشان می دهد. کاربران می توانند حساسیت این سنسور را با پتانسیومتر تعبیه شده روی برد، تنظیم کنند.

شایان ذکر است که ماژول GebraBit Rain Sensor به گونه‌ایی طراحی شده است که کاربران میتوانند درصورت نیاز، بخش کنترل سنسور و بخش مقاومتی سنسور را از هم جدا کرده و با استفاده از دو پین هدر Right angel و سیم، بین این دو بخش ارتباط برقرا کنند.

 برای بررسی دیتاهای خروجی، کافیست ماژول GebraBit Rain Sensorرا در BreadBoard قرار داده سپس با اعمال ولتاژ مناسب ، ماژول  GebraBit Rain Sensor را با هریک از برد های اردوینو، رزبری پای ، دیسکاوری و مخصوصا ماژول GebraBit STM32F303 یا GebraBit ATMEGA32  که پیشنهاد ما استفاده از ماژول های توسعه میکروکنترلری GebraBit هست،راه اندازی و دیتا را دریافت کنید.
دلیل پیشنهاد ما در راه اندازی ماژول GebraBit Rain Sensorبا ماژول های توسعه میکروکنترلری GebraBit مانند GebraBit STM32F303 یا GebraBit ATMEGA32  ، وجود رگولاتور 3V3 و سازگاری ترتیب پین های همه ماژول های GebraBit  با هم بوده(استاندارد GEBRABUS) که فقط کافیست ماژول  GebraBit Rain Sensor را در سوکت مربوطه قرار داده و بدون نیاز به سیم کشی ،ماژول سنسور مورد نظر را توسعه دهید.

ویژگی‌های ماژول GebraBit Rain sensor​

  • Selectable module power supply and voltage between3V3 and 5V
  • On Board, ON/OFF LED indicator
  • Board LED indicator for OUTPUT Signal
  • GEBRABIT Pin Compatible with GEBRABUS
  • GEBRABIT small package
  • It can be used as a daughter board of GEBRABIT MCU Modules
  • Featuring Castellated pad (Assembled as SMD Part)
  • Separatable screw parts to reduce the size of the board

معرفی بخش های ماژول​

سنسور تشخیص باران​

بخش تشخیص باران ماژول GebraBit Rain Sensor، در بالای ماژول قرار گرفته و با برخورد قطرات باران به این بخش، مقاومت آن تغییر میکند، هر چه شدت بارندگی بیشتر باشد مقاومت کمتر می شود.

مبدل LM393​

 در ماژول GebraBit Rain Sensor از یک اپ امپ LM393 استفاده شده که وظیفه اصلی این آپ امپ تبدیل سیگنال آنالوگ ورودی به سیگنال دیجیتال است.

پتانسیومتر تعیین حساسیت​

در طراحی مدار سنسور GebraBit Rain Sensor از یک پتانسیومتر، برای تعیین آستانه حساسیت سنسور استفاده شده است.

LED out

LED OUT زمانی روشن می شود که هیچ قطره بارانی روی بخش تشخیص باران وجود نداشته باشد.

جامپر سلکتور VCC SEL ​

با توجه به وضعیت مقاومت  0R این جامپر ، ولتاژ اصلی تغذیه سنسور از بین  “5V” و “3V3” انتخاب میشود.

LED تغذیه​

با توجه به وضعیت جامپر سلکتور VCCSEL و با اعمال ولتاژ به ماژول توسط پین مربوطه، LED ماژول روشن می شود.

پین‌های ماژول GebraBit Rain sensor​

پین های تغذیه​

  • 5V و 3V3: این پین‌ها می توانند با توجه به وضعیت جامپرسلکتور VCC SEL، تغذیه اصلی سنسور را تامین کنند.
  • GND : این پین، پین زمین برای تغذیه سنسور می باشد.

پین خروجی​

  • AO : این پین برای دریافت خروجی آنالوگ ماژول استفاده می شود و مقدار آب موجود در صفحه تشخیص باران را به صورت ولتاژ آنالوگ ، خروجی می دهد.
  • DO: این پین برای دریافت خروجی دیجیتال ماژول استفاده می شود زمانی که روی برد تشخیص باران، قطره بارانی وجود نداشته باشد، این پین در حالت High میباشد و هنگامیکه مقدار کمی آب تشخیص داده شود، این پین در حالت Low قرار میگیرد، با پاک کردن قطرات آب از روی صفحه، پین DO دوباره به حالت High برمیگردد.

اتصال به پردازنده

اتصال به GebraBit STM32F303 ​

به دلیل سازگاری ترتیب پین های ماژول های GebraBit  با یکدیگر (استاندارد GEBRABUS)، برای راه اندازی و دریافت دیتاهای خروجی ماژول GebraBit Rain Sensor با هرکدام از ماژول‌های میکروکنترلری GebraBit STM32F303  ، کافیست ، ماژول GebraBit Rain Sensor را به راحتی به صورت Pin to Pin بر روی ماژول GebraBit STM32F303  قرار داده و با دادن ولتاژ مناسب ماژول را راه اندازی کنید.

اتصال به GebraBit ATMEGA32A​

به دلیل سازگاری ترتیب پین های ماژول های GebraBit  با یکدیگر (استاندارد GEBRABUS)، برای راه اندازی و دریافت دیتاهای خروجی ماژول GebraBit Rain Sensor با هرکدام از ماژول‌های میکروکنترلری GebraBit ATMEGA32A  ، کافیست ، ماژول GebraBit Rain Sensor را به راحتی به صورت Pin to Pin بر روی ماژول GebraBit ATMEGA32A  قرار داده و با دادن ولتاژ مناسب ماژول را راه اندازی کنید.

توجه: در صورت استفاده از ماژول‌های میکروکنترلری GebraBit توجه داشته باشید که جامپر سلکتورVCC SEL ماژول  GebraBit Rain sensorروی “3V3” باشد تا راحت تر بتوانید با گرفتن ولتاژ”3V3” از ماژول میکروکنترلری، ماژول مورد نظر را استفاده کنید.

اتصال به ARDUINO UNO​

برای اتصال ماژول GebraBit Rain Sensor به ARDUINO UNO مراحل زیر را دنبال کنید:

  • پین “5V” ماژول GebraBit Rain Sensor را به پین “5V” خروجی برد ARDUINO UNO متصل کنید.(سیم قرمز)
  • پین “GND” ماژول GebraBit Rain Sensor را به پین “GND” برد ARDUINO UNO  متصل کنید.(سیم سیاه)
  • پین‌ “DO” ماژول GebraBit Rain Sensor را به یکی از پین‌های دیجیتال  برد (مثلا D10) ARDUINO UNOمتصل کنید.(سیم آبی)
  • پین “AO” ماژول GebraBit Rain Sensor را به یکی از پین‌های آنالوگ برد (مثلا A0) ARDUINO UNO متصل کنید.(سیم نارنجی)

نحوه اتصال موارد ذکر شده در بالا،در این تصویر مشاهده می شود:

هدف ما از انجام این پروژه چیست؟

در این بخش قصد داریم سنسور Rain Sensor را به وسیله میکروکنترلر آرم، سری STM32F راه اندازی کنیم. به منظور استفاده راحت تر و بهینه تر در این پروژه از دو ماژول آماده GB631EN و GebraBit STM32F303 استفاده میکنیم.

این دو ماژول شامل مینیمم قطعات لازم سنسور Rain Sensor و میکروکنترلر STM32F میباشند که توسط تیم جبرابیت جهت آسان سازی کار فراهم شده اند.

در این آموزش چه چیزهایی یاد میگیریم؟

شما در این بخش ضمن راه اندازی و استفاده از سنسور Rain Sensor، به طور خلاصه با نحوه تنظیم بخش های مختلف میکروکنترلر STM32 برای راه اندازی این سنسور با استفاده از ADC، چگونگی استفاده از فایل کتابخانه و درایور مختص ماژول GB631EN، نحوه فراخوانی توابع و در نهایت دریافت داده های سنسور در کامپایلر Keil نیز آشنا خواهید شد.

برای انجام این پروژه به چه چیزهایی نیاز داریم؟

همانطور که احتمالا میدانید برای انجام این پروژه به سخت افزارها و نرم افزارهایی نیاز داریم. عناوین این سخت افزارها و نرم افزارها در جدول زیر در اختیارتان قرار داده شده که میتوانید با کلیک روی هرکدام از آنها، آنها را تهیه/دانلود کنید و برای شروع آماده شوید.

سخت افزارهای مورد نیازنرم افزارهای مورد نیاز
 GebraBit Rain Sensor Keil compiler 
  GebraBit STM32F303 module  STM32CubeMX program
 ST-LINK/V2 programmer

ابتدا مانند تصویر زیر ماژول GebraBit Rain Sensor را به صورت زیر به ماژول GebraBit STM32F303  متصل می کنیم:

در نهایت مقادیر سنسور را به صورت Real Time در پنجره Watch1 کامپایلر Keil در حالت Debug Session  مشاهده خواهیم کرد.
نکته : جامپر سلکتور VCC SEL را روی 3V3 قرار دهید در غیر این صورت امکان آسیب دیدن پین میکرو وجود خواهد داشت.

تنظیمات STM32CubeMX

در ادامه تنظیمات مربوط به هریک از بخش ADC, GPIO , RCC , Debug , Clock را در میکروکنترلر  STM32F303 برای راه اندازی ماژول GebraBit Rain Sensor را مرور می کنیم.

تنظیمات RCC

با توجه به وجود کریستال 8Mhz  در ماژول GebraBit STM32F303 کلاک خارجی را در بخش RCC انتخاب می کنیم:

تنظیمات Debug&Programming

با توجه به دسترسی به پین های SWCLK و SWDIO در ماژول GebraBit STM32F303 ،برای کاهش تعداد پین هنگام Debug&Programming در بلوک SYS گزینه Serial Wire را در بخش Debug  انتخاب می کنیم:

تنظیمات ADC

برای خواندن مقادیر آنالوگ و تبدیل آن به مقادیر دیجیتال از واحد ADC استفاده می کنیم. در بخش mode از پنجره ی کشویی IN1 گزینه ی IN1 Signle-ended را انتخاب می کنیم. از قسمت Configuration و در بخش Resolution گزینه ی ADC 12bit-resolution را انتخاب می کنیم. گزینه ی Continuous conversion mode را نیز Enable می کنیم و پین PA0 را به عنوان ADC1_IN1 انتخاب می کنیم.

تنظیمات GPIO

برای گرفتن دیتای دیجیتال ماژول Rain Sensor پین PA10 را به عنوان GPIO_INPUT انتخاب می کنیم. ماژول Gebrabit STM32F303 دارای یک LED در پین PB6 و یک pushbutton در پین PA3 میباشد که به ترتیب این پین هارا به شکل GPIO_OUTPUT و GPIO_INPUT در می آوریم برای این که تنظیمات نرم افزاری کاربردی تر باشد و ایده های خود را به واقعیت تبدیل کنید.

تنظیمات Clock

تنظیمات کلاک مربوط به هریک از بخش های میکروکنترلر STM32F303 در این کد به شرح ذیل می باشد:

تنظیمات Project Manager

تنظیمات Project Manager به صورت زیر می باشد ، ابتدا وارد بخش Code Generator می شویم و سپس وارد قسمت Generated files میشویم و تنظیمات خط کشیده شده را انجام می دهیم.

در این جا ما از ورژن “5.32”  کامپایلر “MDK-ARM” استفاده می کنیم:

بعد از اتمام تمام تنظیمات فوق ، بر روی GENERATE CODE کلیک کرده و با اضافه کردن کتابخانه و درایور (تهیه شده توسط  GebraBit) Rain Sensor ، کد خود را به راحتی توسعه می دهیم.

کتابخانه و درایور Rain Sensor

GebraBit علاوه بر طراحی ماژولار سنسورها و آی سی های مختلف ، پیشرو در ارائه انواع کتابخانه های ساختاریافته و مستقل از سخت افزار به زبان C، جهت سهولت کاربران در راه اندازی و توسعه نرم افزاری آنها نیز بوده است.

بدین منظور پس از تهیه هر یک از ماژول های GebraBit ، کاربر می تواند با مراجعه به بخش آموزش ماژول مربوطه، کتابخانه مختص به آن ماژول که حاوی فایل h. و c (Header and Source). و یک برنامه نمونه آموزشی تحت سخت افزار های GebraBit STM32F303, GebraBit ATMEGA32A یا Arduino می باشد را دانلود کند.

تمامی توابع و Structure های تعریف شده در کتابخانه ، با جزئیات کامل، کامنت گذاری شده و تمامی پارامتر های دریافتی در آرگومان توابع و مقادیر بازگشتی از آنها ، به اختصار توضیح داده شده است.با توجه به مستقل از سخت افزار بودن کتابخانه ها،کاربر به راحتی می تواند آن را در هر یک از کامپایلر های دلخواه اضافه کرده و با میکروکنترلر و برد توسعه مورد علاقه خود، آن را توسعه دهد.

فایل هدر GebraBit_RainSensor.h

در این فایل بر اساس دیتاشیت سنسور یا ای سی ، بدنه سنسور Rain Sensor و کانفیگ های مربوط به هریک از بلوک های داخلی سنسور Rain Sensor به صورت STRUCT  با نام GebraBit_RainSensor نیز تعریف شده است. که نهایتا در محیط Debug Session تمامی کانفیگ های مربوط به هر بلوک به صورت Real Time قابل مشاهده است.

RainSensor struct

تمام ویژگی های سنسور، ضرایب کالیبراسیون و داده های سنسور در این Struct تعریف شده است و تمامی اطلاعات و کانفیگ اجرا شده بر روی سنسور در این Structure ذخیره شده و می توان تغییرات در هر بخش از سنسور را در محیط Debug Session مشاهده نمود:

typedef struct RainSensor
{
            uint8_t                            DIGITAL_VALUE;
            uint8_t                            WETNESS_PERCENTAGE;
            uint32_t                           ADC_RAW_VALUE;
            float                              ADC_INPUT_VOLTAGE_VALUE;
            ADC_HandleTypeDef                  ADC_HANDELER;
}GebraBit_RainSensor;

اعلان توابع

در پایان این فایل تمامی توابع جهت خواندن و نوشتن ، کانفیگ سنسور و دریافت داده از سنسور اعلان شده است:

void GB_RainSensor_Configuration(GebraBit_RainSensor * RainSensor);
void GB_RainSensor_Read_ADC_Value(GebraBit_RainSensor * RainSensor);
void GB_RainSensor_Read_Digital_Value(GebraBit_RainSensor * RainSensor);
void GB_RainSensor_Get_Data(GebraBit_RainSensor * RainSensor);

فایل سورس GebraBit_RainSensor.c

در این فایل که به زبان C نوشته شده ، تمامی توابع با جزئیات کامل، کامنت گذاری شده و تمامی پارامتر های دریافتی در آرگومان توابع و مقادیر بازگشتی از آنها ، بطور واضح توضیح داده شده است.از این رو در این قسمت به همین توضیحات اکتفا کرده و کاربران را برای اطلاعات بیشتر به بررسی مستقیم از این فایل دعوت می کنیم

برنامه نمونه در Keil

بعد از تولید پروژه Keil با استفاده از STM32CubeMX و اضافه کردن کتابخانه GebraBit_RainSensor.c ارائه شده توسط GebraBit ، به بررسی قسمت اصلی برنامه آموزشی نمونه، فایل main.c و مشاهده خروجی ماژول GebraBit RainSensor در قسمت watch در محیط Debugging برنامه Keil می پردازیم.

شرح فایل main.c

توابع مورد نیاز ماژول GebraBit Rain Sensor، به ساختار اضافه شده است. در قسمت بعدی متغیری به نام RainSensor_Module از نوع ساختار GebraBit_RainSensor (این ساختار در هدر  GebraBit_RainSensor.h  بوده و در بخش توضیحات کتابخانه GebraBit_RainSensor توضیح داده شد) که برای پیکربندی ماژول GebraBit Rain Sensor می باشد، تعریف شده است:

/* USER CODE BEGIN PTD */
GebraBit_RainSensor RainSensor_Module;
/* USER CODE END PTD */

در بخش بعدی از کد ما از تابع  GB_RainSensor_Configuration (&RainSensor_Module) استفاده می کنیم تا تنظیمات مورد نظرمان روی ماژول اعمال شوند و در آخر در قسمت حلقه while، دیتا ADC و دیجیتال به صورت پیوسته از سنسور خوانده می شود:

/* USER CODE BEGIN 2 */
  GB_RainSensor_Configuration(&RainSensor_Module);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    GB_RainSensor_Get_Data(&RainSensor_Module);
    HAL_Delay(500);

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

متن کد main.c

/* USER CODE BEGIN Header */
/*
 * ________________________________________________________________________________________________________
 * Copyright (c) 2020 GebraBit Inc. All rights reserved.
 *
 * This software, related documentation and any modifications thereto (collectively “Software”) is subject
 * to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
 * and other intellectual property rights laws.
 *
 * GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
 * and any use, reproduction, disclosure or distribution of the Software without an express license agreement
 * from GebraBit is strictly prohibited.

 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
 * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN
 * NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THE SOFTWARE.
 * ________________________________________________________________________________________________________
 */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  * @Author         : Sepehr Azimi
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "GebraBit_RainSensor.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_RainSensor RainSensor_Module;
/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_ADC1_Init();
  /* USER CODE BEGIN 2 */
  GB_RainSensor_Configuration(&RainSensor_Module);
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */
    GB_RainSensor_Get_Data(&RainSensor_Module);
    HAL_Delay(500);

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12;
  PeriphClkInit.Adc12ClockSelection = RCC_ADC12PLLCLK_DIV1;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

خروجی برنامه

بعد از تولید پروژه Keil با استفاده از STM32CubeMX و اضافه کردن کتابخانه ، پروگرامر STLINK V2 را با استفاده از آداپتور تبدیل STLINKV2 به GebraBit STM32F303 متصل می کنیم:

تبدیل STLINKV2

    با اتصال پروگرامر STLINK V2 به GebraBit STM32F303 دیگر نیازی به اعمال تغذیه به  ماژول های GebraBit STM32F303 و GebraBit Rain Sensor نمی باشد، زیرا ولتاژ کاری خود را مستقیما از پروگرامر STLINK V2 دریافت میکنند.

    در نهایت وارد حالت Debug شده و با اضافه کردن RainSensor_Module به پنجره watch و اجرای برنامه، تغییرات مقادیر سنسور را مشاهده می کنیم:

    برای اطلاع دقیق از مقادیر کاری و حداکثر مقادیر مجاز آی‌سی‌ها، کاربران باید به دیتاشیت اصلی و رسمی آن قطعات مراجعه کنند

    اگر هر یک از اسناد فنی ناقص یا اشتباه است، لطفاً به ما اطلاع دهید

    با نظرات خود به تیم جبرا در بهبود کیفیت کمک کنید

    نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

    توجه!

    محصولات ما صرفاً برای اهداف تحقیقاتی و توسعه طراحی شده‌اند. جبرابیت صراحتاً اعلام می‌کند که در صورت استفاده کاربران از این محصولات در کاربردهای حساس و دقیق از جمله امور مالی یا مواردی که به جان و مال انسان آسیب می‌زنند، هیچ‌گونه مسئولیتی را نمی‌پذیرد.

    برای اطلاع دقیق از مقادیر کاری و حداکثر مقادیر مجاز آی‌سی‌ها (IC)، کاربران باید حتماً به دیتاشیت اصلی و رسمی آن قطعات مراجعه کنند.

    سبد خرید
    پیمایش به بالا