GebraBit

SHT35 sensor project with STM32F303 microcontroller series

متن سربرگ خود را وارد کنید

SHT35 gebrabit project

SHT35 sensor project with STM32F303 microcontroller series

SHT35 gebrabit project
  1. Home
  2. »
  3. Projects
  4. »
  5. SHT35 sensor project with STM32F303 microcontroller series

What's the purpose of this project?

In this section, we are going to launch the SHT35 sensor using ARM microcontroller, STM32F series. In order to use more conveniently and optimally in this project, we use two ready modules GB624EN and GebraBit STM32F303. These two modules contain the minimum necessary elements of the SHT35 sensor and the STM32F microcontroller, which are provided by the GebraBit team to facilitate the work.

What are we going to learn in this tutorial?

In this tutorial, in addition to setting up and using the SHT35 sensor, you will get to know all the SHT35 sensor registers, how to set the various parts of the STM32 microcontroller to set up this sensor using the I2C protocol, how to use the GB624EN module specific library and driver file. You will also learn how to declare functions and finally receive sensor data in the Keil compiler.  

What do we need to start this project?

As you probably know, we need some hardware and software to do this project. The titles of these hardware and software are provided to you in the table below and you can prepare/download by clicking on each of them and get ready to start.

Required hardware
Required software
Keil compiler 
 STM32CubeMX program
 ST-LINK/V2 programmer

First as shown in the image below, we connect the GebraBit SHT35 module to the GebraBit STM32F303 module as follows:

Note: Considering that the PA14 pin of the GebraBit STM32F303 microcontroller module is used to program the microcontroller, the I2C setting on the PA14 and PA15 pins is not possible in this version, so the GebraBit SHT35 module cannot be placed as a pin to pin on the GebraBit STM32F303 microcontroller module.

Finally, we will see the values of temperature and humidity in Real Time in the “Watch1” window of the Keil compiler in the “Debug Session” mode.

STM32CubeMX settings

In the following, we review the settings related to each of the “I2C”, “RCC”, “Debug”, and “Clock” sections in the STM32F303 microcontroller to develop the GebraBit SHT35 module.

RCC settings

Due to the presence of “8Mhz” crystal in the GebraBit STM32F303 module, we select the “external clock” in the “RCC” section:

Debug & Programming settings

Regarding the access to “SWCLK” and “SWDIO” pins in the GebraBit STM32F303 module, to reduce the number of pins during “Debug & Programming”, in the “SYS” block, we select the “Serial Wire” option in the “Debug” section:

I2C settings

To communicate with the GebraBit STM32F303 module through I2C, select the Fast Mode with a speed of 400khz and select PB8 and PB9 pins as SCL and SDA:

According to the sensor data sheet, the settings of the I2C parameters in the “Parameter Settings” section will be set as shown in the above image.

Clock settings

The “clock” settings for each part of the STM32F303 microcontroller in this code, are as follows:

Project Manager settings

“Project Manager” settings are as follows, here we have used “MDK-ARM” version “5.32” compiler:

After completing all the above settings, we can develop our code easily just by one click on “GENERATE CODE” and adding the SHT35 library and driver (provided by GebraBit).

You can download the “STM32Cube MX”, “library”, “driver” and KEIL project at the end of this tutorial.   

SHT35 library and driver

In addition to the modular design of various sensors and ICs, GebraBit tries to provide variety of structured and hardware-independent libraries in C language for the ease of users in setting up and developing software.

For this purpose, after preparing each GebraBit module, the users can refer to the “tutorial” section of the desired module and download the dedicated library, which contains the “ .h” and “  .c” file (Header and Source) and a sample training program under “GebraBit STM32F303”, “GebraBit ATMEGA32A” or “Arduino” development boards.

All the defined functions and structures in the library are commented in full detail and all the received parameters in the arguments of the functions and their return values, are briefly explained. Since the libraries are hardware independed, the user can easily add the library in any of their favorite compilers and develop it by desired microcontroller and development board.

GebraBit_SHT35.h header file

In this file, based on the datasheet of the sensor or IC, all address registers, the values of each register are defined in the form of “Enumeration”. Also, the casing of the SHT35 sensor and the configurations related to each of the SHT35 sensor internal blocks are defined in the form of a “STRUCT” with the name GebraBit_SHT35. Finally, in the Debug Session environment, all the configurations related to each block can be seen in real time.       

USER REGISTER MAP

The registry map or sensor commands are defined in this section:

				
					1. /************************************************
 2.  *              USER REGISTER MAP               *
 3.  ***********************************************/ 
 4. #define SHT35_I2C		                            &hi2c1
 5. #define SHT35_SOFT_RESET_TIME                       5
 6. #define SHT35_ADDRESS 							    0x44
 7. #define SHT35_WRITE_ADDRESS 			  		 	((SHT35_ADDRESS<<1)|0)
 8. #define SHT35_READ_ADDRESS 						   	((SHT35_ADDRESS<<1)|1)
 9. #define SHT35_READOUT_PERIODIC_MEASUREMENT_RESULT 	0xE000
10. #define SHT35_ART 								    0x2B32
11. #define SHT35_BREAK_STOP			                0x3093
12. #define SHT35_SOFT_RESET 							0x30A2
13. #define SHT35_HEATER_ON 						    0x306D
14. #define SHT35_HEATER_OFF 							0x3066
15. #define SHT35_READOUT_STATUS_REGISTER 				0xF32D
16. #define SHT35_CLEAR_STATUS_REGISTER 				0x3041
17. /*----------------------------------------------*
18.  *           USER REGISTER MAP End              *
19.  *----------------------------------------------*/
20.  

				
			

SHT35_Ability Enum

The ability to activate or deactivate different parts of the sensor is defined in this enum:

				
					typedef enum Ability
{  
	Disable = 0 ,                      
	Enable     
}SHT35_Ability;  

				
			

SHT35_Single_Shot_Mode Enum

The values of this enum are used to select different sensor measurement modes in Single Shot mode:

				
					1. typedef enum Single_Shot_Mode
 2. {
 3.  SHT35_HIGH_REPEATABILITY_CLOCK_STRETCHING      =  0x2C06 ,
 4.  SHT35_MEDIUM_REPEATABILITY_CLOCK_STRETCHING    =  0x2C0D ,
 5.  SHT35_LOW_REPEATABILITY_CLOCK_STRETCHING       =  0x2C10 ,
 6.  SHT35_HIGH_REPEATABILITY_NO_CLOCK_STRETCHING   =  0x2400 ,
 7.  SHT35_MEDIUM_REPEATABILITY_NO_CLOCK_STRETCHING =  0x240B ,
 8.  SHT35_LOW_REPEATABILITY_NO_CLOCK_STRETCHING    =  0x2416
 9. }SHT35_Single_Shot_Mode;
10.  

				
			

SHT35_Periodic_Data_Acquisition_Mode Enum

The values of this enum are used to select different sensor data acquisition modes in periodic mode:

				
					1. typedef enum Periodic_Data_Acquisition_Mode
 2. {
 3.  SHT35_HIGH_REPEATABILITY_0P5_MPS_FREQUENCY      =  0x2032 ,
 4.  SHT35_MEDIUM_REPEATABILITY_0P5_MPS_FREQUENCY    =  0x2024 ,
 5.  SHT35_LOW_REPEATABILITY_0P5_MPS_FREQUENCY       =  0x202F ,
 6.  SHT35_HIGH_REPEATABILITY_1_MPS_FREQUENCY   	 =  0x2130 ,
 7.  SHT35_MEDIUM_REPEATABILITY_1_MPS_FREQUENCY 	 =  0x2126 ,
 8.  SHT35_LOW_REPEATABILITY_1_MPS_FREQUENCY    	 =  0x212D ,
 9.  SHT35_HIGH_REPEATABILITY_2_MPS_FREQUENCY        =  0x2236 ,
10.  SHT35_MEDIUM_REPEATABILITY_2_MPS_FREQUENCY      =  0x2220 ,
11.  SHT35_LOW_REPEATABILITY_2_MPS_FREQUENCY         =  0x222B ,
12.  SHT35_HIGH_REPEATABILITY_4_MPS_FREQUENCY   	 =  0x2334 ,
13.  SHT35_MEDIUM_REPEATABILITY_4_MPS_FREQUENCY 	 =  0x2322 ,
14.  SHT35_LOW_REPEATABILITY_4_MPS_FREQUENCY    	 =  0x2329 ,
15.  SHT35_HIGH_REPEATABILITY_10_MPS_FREQUENCY   	 =  0x2737 ,
16.  SHT35_MEDIUM_REPEATABILITY_10_MPS_FREQUENCY 	 =  0x2721 ,
17.  SHT35_LOW_REPEATABILITY_10_MPS_FREQUENCY    	 =  0x272A 
18. }SHT35_Periodic_Mode;
19.  

				
			

SHT35_ Command_Status Enum

To know the status of commands sent to the sensor, the values of this enum are used:

				
					1. typedef enum Command_Status
2. {  
3. 	LAST_COMMAND_PROCESSED       = 0 ,                      
4. 	LAST_COMMAND_NOT_PROCESSED   = 1    
5. }SHT35_Command_Status;
6.  

				
			

SHT35_ Checksum_Status Enum

This enum is used to know the checksum status:

				
					1. typedef enum Checksum_Status
2. {   
3. ECKSUM_CORRECT               = 0 ,                      
4. 	LAST_WRITE_CHECKSUM_FAILED  = 1    
5. }SHT35_Checksum_Status;
6.  

				
			

SHT35_Measurement_Time Enum

This enum is used to choose when to convert data values:

				
					1. typedef enum Measurement_Time
2. {
3.   HIGH_REPEATABILITY_15_mS      =  15 ,
4.   MEDIUM_REPEATABILITY_6_mS     =  6  ,
5.   LOW_REPEATABILITY_4_mS        =  4  ,
6. }SHT35_Measurement_Time;
7.  

				
			

SHT35_ Heater Enum

Using this enum, the sensor internal heater is turned off or on:

				
					1. typedef enum Heater 
2. {  
3. 	HEATER_ENABLE  = SHT35_HEATER_ON ,                      
4. 	HEATER_DISABLE = SHT35_HEATER_OFF      
5. }SHT35_Heater;
6.  

				
			

SHT35_Alert_Pending_Status Enum

Using this enum, the status of sensor notifications and warnings is checked:

				
					1. typedef enum Alert_Pending_Status 
2. {
3.   NO_PENDING_ALERT   		  = 0,
4.   AT_LEAST_ONE_PENDING_ALERT   = 1
5. } SHT35_Alert_Pending_Status;
6.  

				
			

SHT35_CRC_Status Enum

Using this enum, the status of the CRC check is specified:

				
					1. typedef enum CRC_Status 
2. {  
3. 	CRC_ERROR = 0 ,                      
4. 	CRC_OK     
5. }SHT35_CRC_Status;
6.  

				
			

SHT35_Alert Enum

For sensor temperature and humidity alerts, this enum is used:

				
					typedef enum Alert 
{
  NO_ALERT = 0,
  ALERT    = 1
} SHT35_Alert;

				
			

SHT35_Reset_Status Enum

By using this enum, the sensor reset status is specified:

				
					1. typedef enum 
2. {  
3. 	NOT_DETECTED = 0 ,                      
4. 	DETECTED    
5. }SHT35_Reset_Status;
6.  

				
			

SHT35 struct

All sensor properties, calibration coefficients and sensor data are defined in this “struct” and All the information and configuration implemented on the sensor are stored in this “structure” and you can see the changes in each part of the sensor in the “Debug Session” environment.

				
					1. typedef	struct SHT35
 2. {
 3. 	  uint8_t                       	   Register_Cache;
 4. 	  SHT35_Reset				           RESET;
 5. 	  uint16_t							   COMMAND;
 6. 	  SHT35_Single_Shot_Mode               SINGLE_SHOT_MODE;
 7. 	  SHT35_Periodic_Mode                  PERIODIC_MODE;
 8. 	  SHT35_Measurement_Time               MEASUREMENT_TIME;
 9. 	  HTU31D_Ability                       ART;
10. 	  uint16_t							   STATUS_REGISTER;
11. 	  SHT35_Alert_Pending_Status           ALERT_PENDING;
12. 	  SHT35_Heater			               ON_CHIP_HEATER;
13. 	  SHT35_Alert						   HUMIDITY_ALERT;
14. 	  SHT35_Alert						   TEMPERATURE_ALERT;
15. 	  SHT35_Command_Status                 COMMAND_STATUS;
16. 	  SHT35_Checksum_Status 	           CHECKSUM;  
17. 	  uint8_t 							   SHT35_CRC;
18. 	  SHT35_CRC_Status			           CRC_CHECK;
19. 	  uint8_t                              ADC_RAW_DATA[ADC_RAW_DATA_BUFFER_SIZE];
20. 	  uint16_t                             RAW_TEMPERATURE;
21. 	  uint16_t							   RAW_HUMIDITY;
22.       float 							   TEMPERATURE;
23. 	  float 							   HUMIDITY;
24. //	  double							   PARTIAL_PRESSURE;
25. //	  double 							   DEW_POINT;
26. }GebraBit_SHT35;
27.  

				
			

Declaration of functions

At the end of this file, all the functions for reading and writing in SHT35 registers, sensor configuration and receiving data from the sensor are declared:

				
					1. /********************************************************
 2.  *  Declare Read&Write SHT35 Register Values Functions *
 3.  ********************************************************/
 4. extern void GB_SHT35_Write_Command(GebraBit_SHT35 * SHT35 , uint16_t cmd);
 5. /********************************************************
 6.  *       Declare MS5611 Configuration Functions         *
 7.  ********************************************************/
 8. extern void GB_SHT35_Soft_Reset ( GebraBit_SHT35 * SHT35 )  ;
 9. extern void GB_SHT35_CRC_Check( GebraBit_SHT35 * SHT35 , uint16_t value, uint8_t crc) ;
10. extern void GB_SHT35_On_Chip_Heater ( GebraBit_SHT35 * SHT35 , SHT35_Heater heater )   ;
11. extern void GB_SHT35_Read_Serial_Number ( GebraBit_SHT35 * SHT35  )    ;
12. extern void GB_SHT35_Read_Diagnostic ( GebraBit_SHT35 * SHT35  )   ;
13. extern void GB_SHT35_Configuration(GebraBit_SHT35 * SHT35)  ;
14. extern void GB_SHT35_Start_Conversion ( GebraBit_SHT35 * SHT35   )   ;
15. extern void GB_SHT35_Read_Raw_Temperature_Humidity( GebraBit_SHT35 * SHT35 )  ;
16. extern void GB_SHT35_Temperature ( GebraBit_SHT35 * SHT35 )  ;
17. extern void GB_SHT35_Humidity ( GebraBit_SHT35 * SHT35 )   ;
18. extern void GB_SHT35_Dew_Point( GebraBit_SHT35 * SHT35  ) ;
19. extern void GB_SHT35_initialize( GebraBit_SHT35 * SHT35 )  ;
20. extern void GB_SHT35_Get_Data(GebraBit_SHT35 * SHT35);
21.  

				
			

GebraBit_SHT35.c source file

In this file, which is written in C language, all the functions are commented in full detail, and all the parameters received in the arguments of the functions and their return values are clearly explained so we confine to these explanations and invite users to check this file directly for more information.

Sample program in Keil

After making the Keil project by STM32CubeMX and adding the “GebraBit_SHT35.c” library provided by GebraBit, we will examine the “main .c” file of the sample tutorial and view the output of the GebraBit_SHT35 module in the “watch” part in the Keil compiler “Debugging” environment.

Description of “main.c” file

Enums and functions required by GebraBit SHT35 module have been added to the structures. In the next part, a variable named SHT35_Module of the GebraBit_SHT35 structure type (this structure is in the GebraBit_SHT35 header and is explained in the GebraBit_SHT35 library description section) is defined for the configuration of the GebraBit SHT35 module:  

				
					/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_SHT35 SHT35_Module;
/* USER CODE END PTD */

				
			

In the next part of the written code, using the GB_SHT35_initialize (&SHT35_Module) and GB_SHT35_Configuration (&SHT35_Module) functions, we set the GebraBit SHT35 module and finally, in the while part of the program, the data is read from the sensor and the humidity and temperature values are continuously received:

				
					1. /* USER CODE BEGIN 2 */
 2. 	GB_SHT35_initialize(&SHT35_Module);
 3. 	GB_SHT35_Configuration(&SHT35_Module);
 4.   /* USER CODE END 2 */
 5.  
 6.   /* Infinite loop */
 7.   /* USER CODE BEGIN WHILE */
 8.   while (1)
 9.   {
10.     /* USER CODE END WHILE */
11.  
12.     /* USER CODE BEGIN 3 */
13. 		GB_SHT35_Get_Data(&SHT35_Module);
14.   }
15.   /* USER CODE END 3 */
16. }
17.  

				
			

The “main.c” file code text:

				
					  1. /* USER CODE BEGIN Header */
  2. /*
  3.  * ________________________________________________________________________________________________________
  4.  * Copyright (c) 2020 GebraBit Inc. All rights reserved.
  5.  *
  6.  * This software, related documentation and any modifications thereto (collectively “Software”) is subject
  7.  * to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
  8.  * and other intellectual property rights laws. 
  9.  *
 10.  * GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
 11.  * and any use, reproduction, disclosure or distribution of the Software without an express license agreement
 12.  * from GebraBit is strictly prohibited.
 13.  
 14.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
 15.  * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN  
 16.  * NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, 
 17.  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 18.  * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 19.  * OF THE SOFTWARE.
 20.  * ________________________________________________________________________________________________________
 21.  */
 22. /**
 23.   ******************************************************************************
 24.   * @file           : main.c
 25.   * @brief          : Main program body
 26. 	* @Author       	: Mehrdad Zeinali
 27.   ******************************************************************************
 28.   * @attention
 29.   *
 30.   * Copyright (c) 2022 STMicroelectronics.
 31.   * All rights reserved.
 32.   *
 33.   * This software is licensed under terms that can be found in the LICENSE file
 34.   * in the root directory of this software component.
 35.   * If no LICENSE file comes with this software, it is provided AS-IS.
 36.   *
 37.   ******************************************************************************
 38.   */
 39. /* USER CODE END Header */
 40. /* Includes ------------------------------------------------------------------*/
 41. #include "main.h"
 42. #include "i2c.h"
 43. #include "gpio.h"
 44.  
 45. /* Private includes ----------------------------------------------------------*/
 46. /* USER CODE BEGIN Includes */
 47. #include "GebraBit_SHT35.h"
 48. /* USER CODE END Includes */
 49.  
 50. /* Private typedef -----------------------------------------------------------*/
 51. /* USER CODE BEGIN PTD */
 52. GebraBit_SHT35 SHT35_Module;
 53. /* USER CODE END PTD */
 54.  
 55. /* Private define ------------------------------------------------------------*/
 56. /* USER CODE BEGIN PD */
 57. /* USER CODE END PD */
 58.  
 59. /* Private macro -------------------------------------------------------------*/
 60. /* USER CODE BEGIN PM */
 61.  
 62. /* USER CODE END PM */
 63.  
 64. /* Private variables ---------------------------------------------------------*/
 65.  
 66. /* USER CODE BEGIN PV */
 67.  
 68. /* USER CODE END PV */
 69.  
 70. /* Private function prototypes -----------------------------------------------*/
 71. void SystemClock_Config(void);
 72. /* USER CODE BEGIN PFP */
 73.  
 74. /* USER CODE END PFP */
 75.  
 76. /* Private user code ---------------------------------------------------------*/
 77. /* USER CODE BEGIN 0 */
 78.  
 79. /* USER CODE END 0 */
 80.  
 81. /**
 82.   * @brief  The application entry point.
 83.   * @retval int
 84.   */
 85. int main(void)
 86. {
 87.   /* USER CODE BEGIN 1 */
 88.  
 89.   /* USER CODE END 1 */
 90.  
 91.   /* MCU Configuration--------------------------------------------------------*/
 92.  
 93.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 94.   HAL_Init();
 95.  
 96.   /* USER CODE BEGIN Init */
 97.  
 98.   /* USER CODE END Init */
 99.  
100.   /* Configure the system clock */
101.   SystemClock_Config();
102.  
103.   /* USER CODE BEGIN SysInit */
104.  
105.   /* USER CODE END SysInit */
106.  
107.   /* Initialize all configured peripherals */
108.   MX_GPIO_Init();
109.   MX_I2C1_Init();
110.   /* USER CODE BEGIN 2 */
111.   GB_SHT35_initialize(&SHT35_Module);
112. 	GB_SHT35_Configuration(&SHT35_Module);
113.   /* USER CODE END 2 */
114.  
115.   /* Infinite loop */
116.   /* USER CODE BEGIN WHILE */
117.   while (1)
118.   {
119.     /* USER CODE END WHILE */
120.  
121.     /* USER CODE BEGIN 3 */
122. 		GB_SHT35_Get_Data(&SHT35_Module);
123.   }
124.   /* USER CODE END 3 */
125. }
126.  
127. /**
128.   * @brief System Clock Configuration
129.   * @retval None
130.   */
131. void SystemClock_Config(void)
132. {
133.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
134.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
135.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
136.  
137.   /** Initializes the RCC Oscillators according to the specified parameters
138.   * in the RCC_OscInitTypeDef structure.
139.   */
140.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
141.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
142.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
143.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
144.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
145.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
146.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
147.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
148.   {
149.     Error_Handler();
150.   }
151.  
152.   /** Initializes the CPU, AHB and APB buses clocks
153.   */
154.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
155.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
156.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
157.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
158.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
159.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
160.  
161.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
162.   {
163.     Error_Handler();
164.   }
165.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
166.   PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
167.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
168.   {
169.     Error_Handler();
170.   }
171. }
172.  
173. /* USER CODE BEGIN 4 */
174.  
175. /* USER CODE END 4 */
176.  
177. /**
178.   * @brief  This function is executed in case of error occurrence.
179.   * @retval None
180.   */
181. void Error_Handler(void)
182. {
183.   /* USER CODE BEGIN Error_Handler_Debug */
184.   /* User can add his own implementation to report the HAL error return state */
185.   __disable_irq();
186.   while (1)
187.   {
188.   }
189.   /* USER CODE END Error_Handler_Debug */
190. }
191.  
192. #ifdef  USE_FULL_ASSERT
193. /**
194.   * @brief  Reports the name of the source file and the source line number
195.   *         where the assert_param error has occurred.
196.   * @param  file: pointer to the source file name
197.   * @param  line: assert_param error line source number
198.   * @retval None
199.   */
200. void assert_failed(uint8_t *file, uint32_t line)
201. {
202.   /* USER CODE BEGIN 6 */
203.   /* User can add his own implementation to report the file name and line number,
204.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
205.   /* USER CODE END 6 */
206. }
207. #endif /* USE_FULL_ASSERT */
208.  

				
			

Program output

After generating the Keil project using STM32CubeMX and adding the library, we connect the STLINK V2 programmer to the GebraBit STM32F303 using the STLINKV2 adapter:

STLINKV2 adapter:

By connecting the STLINK V2 programmer to the GebraBit STM32F303, there is no need to apply power to the GebraBit STM32F303 and GebraBit SHT35 modules, because they receive their supply voltage directly from the STLINK V2 programmer.

Finally, enter the “Debug” mode and by adding the “SHT35_Module” to the “watch” window and running the program, we can see the changes in the humidity and temperature of the GebraBit SHT35 module:

In the following, you can download the “GebraBit SHT35 module setup project” using the GebraBit STM32F303 module in the Keil environment, the “STM32CubeMX file”, the schematic of the modules and the “SHT35 datasheet”.

Program output video

این مقاله را با دوستانتان به اشتراک بگذارید!

Leave a Reply

Your email address will not be published. Required fields are marked *

Shopping cart
Start typing to see posts you are looking for.

Sign in

No account yet?