GebraBit

LTR303ALS sensor project with STM32F303 microcontroller series

متن سربرگ خود را وارد کنید

LTR303 gebrabit project

LTR303ALS sensor project with STM32F303 microcontroller series

LTR303 gebrabit project
  1. Home
  2. »
  3. Projects
  4. »
  5. LTR303ALS sensor project with STM32F303 microcontroller series

What's the purpose of this project?

In this section, we are going to launch the LTR303ALS sensor using ARM microcontroller, STM32F series. In order to use more conveniently and optimally in this project, we use two ready modules GB612EN and GebraBit STM32F303. These two modules contain the minimum necessary elements of the LTR303ALS sensor and the STM32F microcontroller, which are provided by the GebraBit team to facilitate the work.

What are we going to learn in this tutorial?

In this tutorial, in addition to setting up and using the LTR303ALS sensor, you will get to know all the LTR303ALS sensor registers, how to set the various parts of the STM32 microcontroller to set up this sensor using the I2C protocol, how to use the GB612EN module specific library and driver file. You will also learn how to declare functions and finally receive sensor data in the Keil compiler.  

What do we need to start this project?

As you probably know, we need some hardware and software to do this project. The titles of these hardware and software are provided to you in the table below and you can prepare/download by clicking on each of them and get ready to start.

Required hardware
Required software
Keil compiler 
 STM32CubeMX program
 ST-LINK/V2 programmer

First as shown in the image below, we connect the GebraBit LTR303ALS module to the GebraBit STM32F303 module as follows:

Note: Considering that the PA14 pin of the GebraBit STM32F303 microcontroller module is used to program the microcontroller, the I2C setting on the PA14 and PA15 pins is not possible in this version, so the GebraBit LTR303ALS module cannot be placed as a pin to pin on the GebraBit STM32F303 microcontroller module.

Finally, we will see the values of IR and ALS in Real Time in the “Watch1” window of the Keil compiler in the “Debug Session” mode.

STM32CubeMX settings

In the following, we review the settings related to each of the “I2C”, “RCC”, “Debug”, and “Clock” sections in the STM32F303 microcontroller to develop the GebraBit LTR303ALS module.

RCC settings

Due to the presence of “8Mhz” crystal in the GebraBit STM32F303 module, we select the “external clock” in the “RCC” section:

Debug & Programming settings

Regarding the access to “SWCLK” and “SWDIO” pins in the GebraBit STM32F303 module, to reduce the number of pins during “Debug & Programming”, in the “SYS” block, we select the “Serial Wire” option in the “Debug” section:

I2C settings

To communicate with the GebraBit STM32F303 module through I2C, select the Standard Mode with a speed of 100khz and select PB8 and PB9 pins as SCL and SDA:

According to the sensor data sheet, the settings of the I2C parameters in the “Parameter Settings” section will be set as shown in the above image.

Clock settings

The “clock” settings for each part of the STM32F303 microcontroller in this code, are as follows:

Project Manager settings

“Project Manager” settings are as follows, here we have used “MDK-ARM” version “5.32” compiler:

After completing all the above settings, we can develop our code easily just by one click on “GENERATE CODE” and adding the LTR303ALS library and driver (provided by GebraBit).

You can download the “STM32Cube MX”, “library”, “driver” and KEIL project at the end of this tutorial.   

LTR303ALS library and driver

In addition to the modular design of various sensors and ICs, GebraBit tries to provide variety of structured and hardware-independent libraries in C language for the ease of users in setting up and developing software.

For this purpose, after preparing each GebraBit module, the users can refer to the “tutorial” section of the desired module and download the dedicated library, which contains the “ .h” and “  .c” file (Header and Source) and a sample training program under “GebraBit STM32F303”, “GebraBit ATMEGA32A” or “Arduino” development boards.

All the defined functions and structures in the library are commented in full detail and all the received parameters in the arguments of the functions and their return values, are briefly explained. Since the libraries are hardware independed, the user can easily add the library in any of their favorite compilers and develop it by desired microcontroller and development board.

GebraBit_LTR303ALS.h header file

In this file, based on the datasheet of the sensor or IC, all address registers, the values of each register are defined in the form of “Enumeration”. Also, the casing of the SHT35 sensor and the configurations related to each of the LTR33ALS sensor internal blocks are defined in the form of a “STRUCT” with the name GebraBit_LTR303ALS. Finally, in the Debug Session environment, all the configurations related to each block can be seen in real time.       

USER REGISTER MAP

The registry map or sensor commands are defined in this section:

				
					1. #define LTR303ALS_ALS_CONTR                  0x80
 2. #define LTR303ALS_ALS_MEAS_RATE         	 0x85
 3. #define LTR303ALS_PART_ID		  		     0x86
 4. #define LTR303ALS_MANUFAC_ID                 0x87
 5. #define LTR303ALS_ALS_DATA_CH1_0             0x88      ////0xA0 TO 0xAE
 6. #define LTR303ALS_ALS_DATA_CH1_1	         0x89
 7. #define LTR303ALS_ALS_DATA_CH0_0		     0x8A
 8. #define LTR303ALS_ALS_DATA_CH0_1		     0x8B
 9. #define LTR303ALS_ALS_STATUS		         0x8C	  /* I2C Address */
10. #define LTR303ALS_INTERRUPT                  0x8F
11. #define LTR303ALS_ALS_THRES_UP_0             0x97
12. #define LTR303ALS_ALS_THRES_UP_1		     0x98
13. #define LTR303ALS_ALS_THRES_LOW_0 			 0x99
14. #define LTR303ALS_ALS_THRES_LOW_1 			 0x9A
15. #define LTR303ALS_INTERRUPT_PERSIST		     0x9E
16. #define LTR303ALS_WRITE_ADDRESS 		     0x52
17. #define LTR303ALS_READ_ADDRESS               0x53
18. #define LTR303ALS_ADDRESS 			         0x29
19. #define LTR303ALS_I2C		                 &hi2c1	
20. #define LTR303ALS_OSR_256_CONVERSION_TIME	 1
21. #define LTR303ALS_OSR_512_CONVERSION_TIME	 2
22. #define LTR303ALS_OSR_1024_CONVERSION_TIME	 3
23. #define LTR303ALS_OSR_2048_CONVERSION_TIME	 5
24. #define LTR303ALS_OSR_4096_CONVERSION_TIME	 9
25. #define LTR303ALS_OSR_8192_CONVERSION_TIME	 17
26. #define REGISTER_DATA_BUFFER_SIZE            4
27.  

				
			

LTR303ALS_ALS_Mode Enum

This enum is used to change the sensor working mode:

				
					typedef enum ALS_Mode 
{  
	STANDBY = 0 ,                      
	ACTIVE     
}LTR303ALS_ALS_Mode;

				
			

LTR303ALS_ALS_Gain Enum

The values of this enum are used to set the sensor gain:

				
					typedef enum ALS_Gain 
{
  ALS_GAIN_1X  = 0,
  ALS_GAIN_2X  = 1,
  ALS_GAIN_4X  = 2,
  ALS_GAIN_8X  = 3,
  ALS_GAIN_48X = 6,
  ALS_GAIN_96X = 7,
} LTR303ALS_ALS_Gain;

				
			

LTR303ALS_Integration_Time Enum

The values of this enum are used to select t sensor data integration time:

				
					typedef enum Integration_Time
{
  ALS_INTEGTIME_100_mS,
  ALS_INTEGTIME_50_mS ,
  ALS_INTEGTIME_200_mS,
  ALS_INTEGTIME_400_mS,
  ALS_INTEGTIME_150_mS,
  ALS_INTEGTIME_250_mS,
  ALS_INTEGTIME_300_mS,
  ALS_INTEGTIME_350_mS,
} LTR303ALS_Integration_Time;

				
			

LTR303ALS_ Measurement_Rate Enum

The measurement rate of sensor data values determined by this enum values:

				
					typedef enum Measurement_Rate
{
  ALS_MEASRATE_50_mS,
  ALS_MEASRATE_100_mS,
  ALS_MEASRATE_200_mS,
  ALS_MEASRATE_500_mS,
  ALS_MEASRATE_1000_mS,
  ALS_MEASRATE_2000_mS,
} LTR303ALS_Measurement_Rate;

				
			

LTR303ALS_Data_Status Enum

The values of this enum determine whether the read data is new or old values:

				
					typedef enum Data_Status 
{  
	OLD_DATA = 0 ,                      
	NEW_DATA     
}LTR303ALS_Data_Status;

				
			

LTR303ALS_ Interrupt_Status Enum

This enum is used to enable or disable the sensor interrupt:

				
					typedef enum Interrupt_Status 
{  
	INTERRUPT_INACTIVE = 0 ,                      
	INTERRUPT_ACTIVE     
}LTR303ALS_Interrupt_Status;

				
			

LTR303ALS_Data_Valid Enum

Using this enum, it is determined whether the read data is correct or not:

				
					typedef enum Data_Valid 
{  
	DATA_IS_VALID = 0 ,                      
	DATA_IS_INVALID     
}LTR303ALS_Data_Valid;

				
			

LTR303ALS_Interrupt_Mode Enum

Using this enum, the sensor interrupt mode is selected:

				
					typedef enum Interrupt_Mode 
{  
	INT_PIN_INACTIVE = 0 ,                      
	INT_PIN_TRIG_INTERRUPT     
}LTR303ALS_Interrupt_Mode;

				
			

LTR303ALS_Interrupt_Polarity Enum

Using this enum, the interrupt pin logic level (active low or active high) is selected when it occurs:

				
					typedef enum Interrupt_Polarity 
{  
	ACTIVE_LOW = 0 ,                      
	ACTIVE_HIGH     
}LTR303ALS_Interrupt_Polarity;

				
			

LTR303ALS_Interrupt_Persist Enum

Using this enum, it is determined after how many repetitions of a mode, the interrupt should occur:

				
					typedef enum Interrupt_Persist
{
EVERY_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_2_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_3_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_4_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_5_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_6_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_7_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_8_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_9_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_10_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_11_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_12_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_13_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_14_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_15_ALS_VALUE_OUT_OF_THR_RANGE,
CONSECUTIVE_16_ALS_VALUE_OUT_OF_THR_RANGE,
} LTR303ALS_Interrupt_Persist;

				
			

LTR303ALS_Reset_Status Enum

By using this enum, the sensor reset status is determined:

				
					typedef enum 
{  
	FAILED = 0 ,                      
	DONE     
}LTR303ALS_Reset_Status;

				
			

LTR303ALS struct

All sensor properties, calibration coefficients and sensor data are defined in this “struct” and All the information and configuration implemented on the sensor are stored in this “structure” and you can see the changes in each part of the sensor in the “Debug Session” environment.

				
					1. typedef	struct LTR303ALS
 2. {
 3. 	  uint8_t                       	Register_Cache;
 4. 	  uint8_t			                PART_ID;
 5. 	  uint8_t							MANUFACTURE_ID;
 6. 	  LTR303ALS_Reset_Status			RESET;
 7. 	  LTR303ALS_ALS_Mode                ALS_MODE;
 8. 	  LTR303ALS_ALS_Gain                ALS_GAIN;
 9. 	  uint8_t	 						ALS_GAIN_VALUE;
10. 	  LTR303ALS_Measurement_Rate        MEASUREMENT_RATE;
11. 	  LTR303ALS_Integration_Time        INTEGRATION_TIME;
12. 	  float								INTEGRATION_TIME_VALUE;
13.       LTR303ALS_Data_Status             DATA_STATUS;
14.       LTR303ALS_Interrupt_Status		INTERRRUPT_STATUS;
15.       LTR303ALS_Data_Valid              DATA;
16. 	  LTR303ALS_Interrupt_Mode          INTERRUPT_MODE;
17. 	  LTR303ALS_Interrupt_Polarity      INTERRUPT_POLARITY;
18.       LTR303ALS_Interrupt_Persist       INTERRUPT_PERSIST;
19. 	  uint16_t                          INTERRUPT_UPPER_THRESHOLD;
20. 	  uint16_t                          INTERRUPT_LOWER_THRESHOLD;
21. 	  uint8_t 							REGISTER_DATA[REGISTER_DATA_BUFFER_SIZE];
22. 	  uint16_t               			ALS_DATA_CH1;//Reference to uint16_t where IR-only data will be stored
23. 	  uint16_t               			ALS_DATA_CH0;//Reference to uint16_t where visible+IR data will be stored
24. 	  double 							RATIO;
25. 	  double 							ALS_LUX;
26. }GebraBit_LTR303ALS;
27.  

				
			

Declaration of functions

At the end of this file, all the functions for reading and writing in LTR303ALS registers, sensor configuration and receiving data from the sensor are declared:

				
					1. extern void GB_LTR303ALS_Read_Reg_Data(uint8_t regAddr,  uint8_t *data)	;
 2. extern void GB_LTR303ALS_Burst_Read(uint8_t regAddr,  uint8_t *data, uint16_t byteQuantity);
 3. extern void GB_LTR303ALS_Read_Reg_Bits (uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t* data);	
 4. extern void GB_LTR303ALS_Write_Command( uint8_t cmd);
 5. extern void GB_LTR303ALS_Write_Reg_Data(uint8_t regAddr,  uint8_t data)	;
 6. extern void GB_LTR303ALS_Write_Reg_Bits(uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t data);
 7. /********************************************************
 8.  *       Declare LTR303ALS Configuration Functions         *
 9.  ********************************************************/
10. extern void GB_LTR303ALS_Soft_Reset ( GebraBit_LTR303ALS * LTR303ALS )  ;
11. extern void GB_LTR303ALS_ALS_Mode ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_ALS_Mode als ) ;
12. extern void GB_LTR303ALS_ALS_Gain ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_ALS_Gain gain )  ;
13. extern void GB_LTR303ALS_Measurement_Repeat_Rate ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_Measurement_Rate rate )  ;
14. extern void GB_LTR303ALS_Integration_Time ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_Integration_Time intg )  ;
15. extern void GB_LTR303ALS_Read_Part_ID ( GebraBit_LTR303ALS * LTR303ALS  )  ;
16. extern void GB_LTR303ALS_Read_Manufacture_ID ( GebraBit_LTR303ALS * LTR303ALS )  ;
17. extern void GB_LTR303ALS_Read_ALS_STATUS ( GebraBit_LTR303ALS * LTR303ALS )  ;
18. extern void GB_LTR303ALS_Interrupt_Mode ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_Interrupt_Mode mode )  ;
19. extern void GB_LTR303ALS_Interrupt_Polarity ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_Interrupt_Polarity polar )  ;
20. extern void GB_LTR303ALS_Interrupt_Persist ( GebraBit_LTR303ALS * LTR303ALS , LTR303ALS_Interrupt_Persist persist )  ;
21. extern void GB_LTR303ALS_Interrupt_Upper_Limitation ( GebraBit_LTR303ALS * LTR303ALS , uint16_t limit );
22. extern void GB_LTR303ALS_Interrupt_Lower_Limitation ( GebraBit_LTR303ALS * LTR303ALS , uint16_t limit )  ;
23. extern void GB_LTR303ALS_initialize( GebraBit_LTR303ALS * LTR303ALS )  ;
24. extern void GB_LTR303ALS_Configuration(GebraBit_LTR303ALS * LTR303ALS)  ;
25. extern void GB_LTR303ALS_Get_ALS_CH0_CH1_DATA(GebraBit_LTR303ALS * LTR303ALS);
26. extern void GB_LTR303ALS_Lux_Reading(GebraBit_LTR303ALS * LTR303ALS);
27. extern void GB_LTR303ALS_Get_Data(GebraBit_LTR303ALS * LTR303ALS);

				
			

GebraBit_LTR303ALS.c source file

In this file, which is written in C language, all the functions are commented in full detail, and all the parameters received in the arguments of the functions and their return values are clearly explained so we confine to these explanations and invite users to check this file directly for more information.

Sample program in Keil

After making the Keil project by STM32CubeMX and adding the “GebraBit_LTR303ALS.c” library provided by GebraBit, we will examine the “main .c” file of the sample tutorial and view the output of the GebraBit_LTR303ALS module in the “watch” part in the Keil compiler “Debugging” environment.

Description of “main.c” file

Enums and functions required by GebraBit LTR303ALS module have been added to the structures. In the next part, a variable named LTR303ALS_Module of the GebraBit_ LTR303ALS structure type (this structure is in the GebraBit_LTR303ALS header and is explained in the GebraBit_LTR303ALS library description section) is defined for the configuration of the GebraBit LTR303ALS module:  

				
					/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_LTR303ALS LTR303ALS_Module;
/* USER CODE END PTD */

				
			

In the next part of the written code, using the GB_LTR303ALS_initialize (&LTR303ALS _Module) and GB_LTR303ALS_Configuration (&LTR303ALS_Module) functions, we set the GebraBit LTR303ALS module and finally, in the while part of the program, the data is read from the sensor and the ALS and IR values are continuously received:

				
					1. /* USER CODE BEGIN 2 */
 2. 	GB_LTR303ALS_initialize(&LTR303ALS_Module);
 3. 	GB_LTR303ALS_Configuration(&LTR303ALS_Module);
 4.   /* USER CODE END 2 */
 5.  
 6.   /* Infinite loop */
 7.   /* USER CODE BEGIN WHILE */
 8.   while (1)
 9.   {
10.     /* USER CODE END WHILE */
11.  
12.     /* USER CODE BEGIN 3 */
13. 		GB_LTR303ALS_Get_Data(&LTR303ALS_Module);
14.   }
15.   /* USER CODE END 3 */
16. }
17.  

				
			

The “main.c” file code text:

				
					  1. /* USER CODE BEGIN Header */
  2. /*
  3.  * ________________________________________________________________________________________________________
  4.  * Copyright (c) 2020 GebraBit Inc. All rights reserved.
  5.  *
  6.  * This software, related documentation and any modifications thereto (collectively “Software”) is subject
  7.  * to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
  8.  * and other intellectual property rights laws. 
  9.  *
 10.  * GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
 11.  * and any use, reproduction, disclosure or distribution of the Software without an express license agreement
 12.  * from GebraBit is strictly prohibited.
 13.  
 14.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
 15.  * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN  
 16.  * NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, 
 17.  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 18.  * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 19.  * OF THE SOFTWARE.
 20.  * ________________________________________________________________________________________________________
 21.  */
 22. /**
 23.   ******************************************************************************
 24.   * @file           : main.c
 25.   * @brief          : Main program body
 26. 	* @Author       	: Mehrdad Zeinali
 27.   ******************************************************************************
 28.   * @attention
 29.   *
 30.   * Copyright (c) 2022 STMicroelectronics.
 31.   * All rights reserved.
 32.   *
 33.   * This software is licensed under terms that can be found in the LICENSE file
 34.   * in the root directory of this software component.
 35.   * If no LICENSE file comes with this software, it is provided AS-IS.
 36.   *
 37.   ******************************************************************************
 38.   */
 39. /* USER CODE END Header */
 40. /* Includes ------------------------------------------------------------------*/
 41. #include "main.h"
 42. #include "i2c.h"
 43. #include "gpio.h"
 44.  
 45. /* Private includes ----------------------------------------------------------*/
 46. /* USER CODE BEGIN Includes */
 47. #include "LTR303ALS.h"
 48. /* USER CODE END Includes */
 49.  
 50. /* Private typedef -----------------------------------------------------------*/
 51. /* USER CODE BEGIN PTD */
 52. GebraBit_LTR303ALS LTR303ALS_Module;
 53. /* USER CODE END PTD */
 54.  
 55. /* Private define ------------------------------------------------------------*/
 56. /* USER CODE BEGIN PD */
 57. /* USER CODE END PD */
 58.  
 59. /* Private macro -------------------------------------------------------------*/
 60. /* USER CODE BEGIN PM */
 61.  
 62. /* USER CODE END PM */
 63.  
 64. /* Private variables ---------------------------------------------------------*/
 65.  
 66. /* USER CODE BEGIN PV */
 67.  
 68. /* USER CODE END PV */
 69.  
 70. /* Private function prototypes -----------------------------------------------*/
 71. void SystemClock_Config(void);
 72. /* USER CODE BEGIN PFP */
 73.  
 74. /* USER CODE END PFP */
 75.  
 76. /* Private user code ---------------------------------------------------------*/
 77. /* USER CODE BEGIN 0 */
 78.  
 79. /* USER CODE END 0 */
 80.  
 81. /**
 82.   * @brief  The application entry point.
 83.   * @retval int
 84.   */
 85. int main(void)
 86. {
 87.   /* USER CODE BEGIN 1 */
 88.  
 89.   /* USER CODE END 1 */
 90.  
 91.   /* MCU Configuration--------------------------------------------------------*/
 92.  
 93.   /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 94.   HAL_Init();
 95.  
 96.   /* USER CODE BEGIN Init */
 97.  
 98.   /* USER CODE END Init */
 99.  
100.   /* Configure the system clock */
101.   SystemClock_Config();
102.  
103.   /* USER CODE BEGIN SysInit */
104.  
105.   /* USER CODE END SysInit */
106.  
107.   /* Initialize all configured peripherals */
108.   MX_GPIO_Init();
109.   MX_I2C1_Init();
110.   /* USER CODE BEGIN 2 */	
111.   GB_LTR303ALS_initialize(<R303ALS_Module);
112.   GB_LTR303ALS_Configuration(<R303ALS_Module);
113.   /* USER CODE END 2 */
114.  
115.   /* Infinite loop */
116.   /* USER CODE BEGIN WHILE */
117.   while (1)
118.   {
119.     /* USER CODE END WHILE */
120.  
121.     /* USER CODE BEGIN 3 */
122. 		GB_LTR303ALS_Get_Data(<R303ALS_Module);
123.   }
124.   /* USER CODE END 3 */
125. }
126.  
127. /**
128.   * @brief System Clock Configuration
129.   * @retval None
130.   */
131. void SystemClock_Config(void)
132. {
133.   RCC_OscInitTypeDef RCC_OscInitStruct = {0};
134.   RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
135.   RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
136.  
137.   /** Initializes the RCC Oscillators according to the specified parameters
138.   * in the RCC_OscInitTypeDef structure.
139.   */
140.   RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
141.   RCC_OscInitStruct.HSEState = RCC_HSE_ON;
142.   RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
143.   RCC_OscInitStruct.HSIState = RCC_HSI_ON;
144.   RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
145.   RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
146.   RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
147.   if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
148.   {
149.     Error_Handler();
150.   }
151.  
152.   /** Initializes the CPU, AHB and APB buses clocks
153.   */
154.   RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
155.                               |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
156.   RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
157.   RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
158.   RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
159.   RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
160.  
161.   if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
162.   {
163.     Error_Handler();
164.   }
165.   PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
166.   PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
167.   if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
168.   {
169.     Error_Handler();
170.   }
171. }
172.  
173. /* USER CODE BEGIN 4 */
174.  
175. /* USER CODE END 4 */
176.  
177. /**
178.   * @brief  This function is executed in case of error occurrence.
179.   * @retval None
180.   */
181. void Error_Handler(void)
182. {
183.   /* USER CODE BEGIN Error_Handler_Debug */
184.   /* User can add his own implementation to report the HAL error return state */
185.   __disable_irq();
186.   while (1)
187.   {
188.   }
189.   /* USER CODE END Error_Handler_Debug */
190. }
191.  
192. #ifdef  USE_FULL_ASSERT
193. /**
194.   * @brief  Reports the name of the source file and the source line number
195.   *         where the assert_param error has occurred.
196.   * @param  file: pointer to the source file name
197.   * @param  line: assert_param error line source number
198.   * @retval None
199.   */
200. void assert_failed(uint8_t *file, uint32_t line)
201. {
202.   /* USER CODE BEGIN 6 */
203.   /* User can add his own implementation to report the file name and line number,
204.      ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
205.   /* USER CODE END 6 */
206. }
207. #endif /* USE_FULL_ASSERT */
208.  

				
			

Program output

After generating the Keil project using STM32CubeMX and adding the library, we connect the STLINK V2 programmer to the GebraBit STM32F303 using the STLINKV2 adapter:

STLINKV2 adapter:

By connecting the STLINK V2 programmer to the GebraBit STM32F303, there is no need to apply power to the GebraBit STM32F303 and GebraBit LTR303ALS modules, because they receive their supply voltage directly from the STLINK V2 programmer.

Finally, enter the “Debug” mode and by adding the “LTR303ALS_Module” to the “watch” window and running the program, we can see the changes in the IR and ALS values of the GebraBit LTR303ALS module:

In the following, you can download the “GebraBit LTR303ALS module setup project” using the GebraBit STM32F303 module in the Keil environment, the “STM32CubeMX file”, the schematic of the modules and the “LTR303ALS datasheet”.

Program output video

این مقاله را با دوستانتان به اشتراک بگذارید!

Leave a Reply

Your email address will not be published. Required fields are marked *

Shopping cart
Start typing to see posts you are looking for.

Sign in

No account yet?