GebraBit

ICM20789 Sensor Project With STM32F303 Microcontroller

متن سربرگ خود را وارد کنید

ICM20789 gebrabit project

ICM20789 Sensor Project With STM32F303 Microcontroller

ICM20789 gebrabit project
  1. Home
  2. »
  3. motion
  4. »
  5. ICM20789 Sensor Project With STM32F303 Microcontroller

What's the purpose of this project?

In this section, we are going to launch the ICM20789 sensor using ARM microcontroller, STM32F series. In order to use more conveniently and optimally in this project, we use two ready modules GB307IM and GebraBit STM32F303. These two modules contain the minimum necessary elements of the ICM20789 sensor and the STM32F microcontroller, which are provided by the GebraBit team to facilitate the work.

What are we going to learn in this tutorial?

In this tutorial, in addition to setting up and using the ICM20789 sensor, you will get to know all the ICM20789 sensor registers, how to set the various parts of the STM32 microcontroller to set up this sensor using the SPI protocol, how to use the GB307IM module specific library and driver file. You will also learn how to declare functions and finally receive sensor data in the Keil compiler.  

What do we need to start this project?

As you probably know, we need some hardware and software to do this project. The titles of these hardware and software are provided to you in the table below and you can prepare/download by clicking on each of them and get ready to start.

Required hardware
Required software
Keil compiler 
 STM32CubeMX program
 ST-LINK/V2 programmer

The first step to set up the GebraBit ICM20789 module via SPI is to select the SPI communication protocol using the on-board selector jumpers, and then place the GebraBit ICM20789 module as Pin To Pin on the GebraBit STM32F303 module as shown below.

Note: It should be noted that the above picture is intended only to show how the GebraBit ICM20789 module is placed as pin to pin on the GebraBit STM32F303 module. Therefore, to use the SPI communication protocol, the user must choose the correct state of the on-board selector jumpers.

Also please note that here  we placed the GebraBit ICM20789 module  on the microcontroller just for better understanding, but since the logic level of the GebraBit ICM20789  module is 1.8V and the logic level of the GebraBit STM32F303 microcontroller module is 3V3, according to the datasheet, users must avoid placing GebraBit ICM20789 as Pin to Pin on GebraBit STM32F303 microcontroller module . Therefore, it is necessary to convert the logic level of two modules through a logic level converter.

the correct way to connect GebraBit ICM20789 module with GebraBit STM32F303 microcontroller module using SPI protocol is as follows.

In the new version of the GebraBit ICM20789 module, this problem has been solved and users can easily place the new version of this module as pin to pin on the GebraBit STM32F303 microcontroller module.

Finally, we will see the values of temperature, acceleration and angular velocity in the three “X, Y, Z” axes in real time in the “Watch1” window of the Keil compiler in “Debug Session”  mode.

STM32CubeMX settings

In the following, we will explain the settings related to each of the SPI, RCC, Debug, and Clock sections in the STM32F303 microcontroller to launch the GebraBit ICM20789 module.

RCC settings

As there is an 8Mhz crystal in the GebraBit STM32F30 module, we select the “external clock” in the RCC section.

Debug & Programming settings

In the GebraBit STM32F303 module, access to the “SWCLK” and “SWDIO” pins is provided for users, therefore, to reduce the number of pins during “Debug&Programming”, in the “SYS” block, we select the “Serial Wire” option in the Debug section:

SPI settings

To communicate with the GebraBit STM32F303 module via SPI, we select the “Full Duplex Master” mode and select the PB3, PB4, and PB5 pins as SCK, MISO and MOSI and define the PC13 pin as CS:

According to the sensor data sheet, the settings of the SPI parameters in the “Parameter Settings” section will be set as shown in the above image.

Clock settings

The “clock” settings for each part of the STM32F303 microcontroller in this code, are as follows:

Project Manager settings

We configure “Project Manager” as shown in the below figure. Here we have used the MDK-ARM compiler version 5.32:

After completing all the above settings, we can develop our code easily just by one click on “GENERATE CODE” and adding the ICM20789 library and driver (provided by GebraBit).

You can download the “STM32Cube MX”, “ICM20789 library”, “driver” and KEIL project at the end of this tutorial.  

ICM20789 library and driver

In addition to the modular design of various sensors and ICs, GebraBit tries to provide variety of structured and hardware-independent libraries in C language for the ease of users in setting up and developing software.

For this purpose, after preparing each GebraBit module, the users can refer to the “toturial” section of the desired module and download the dedicated library, which contains the “ .h” and “  .c” file (Header and Source) and a sample training program under “GebraBit STM32F303”, “GebraBit ATMEGA32A” or “Arduino” development boards.

All the defined functions and structures in the library are commented in full detail and all the received parameters in the arguments of the functions and their return values, are briefly explained. Since  the libraries are hardware independed. , the user can easily add the library in any of their favorite compilers and develop it by desired microcontroller and development board.

GebraBit ICM20789.h header file

The GebraBit ICM20789.h header file is based on the datasheet of the sensor or IC. all the address registers, the values of each register are defined in the form of “Enumeration” in this file. Also, the casing of the ICM20789 sensor and the configurations related to each of the ICM20789 sensor internal blocks are defined in the form of a “STRUCT” with the name GebraBit_ ICM20789. Finally, in the Debug Session environment, all the configurations related to each block can be seen in real time.   

ICM20789 _Interface Enum

This enum is used to select the communication protocol with the sensor:

				
					typedef enum  interface
{  
 NOT_SPI = 0,                  						  
 IS_SPI                                 					
}ICM20789_Interface;

				
			

ICM20789_Accel_Fs_Sel Enum

This enum is used to select the Full Scale Range of the Accelerometer sensor:

				
					typedef enum accel_fs_sel
{  
FULL_SCALE_2g = 0,                    						 
FULL_SCALE_4g    ,                						     
FULL_SCALE_8g    ,               					     
FULL_SCALE_16g            							
}ICM20789_Accel_Fs_Sel;

				
			

ICM20789_Accel_Scale_Factor Enum

This enum is used to select the Scale Factor value of the Accelerometer sensor:

				
					typedef enum Accel_Scale_Factor
{  
SCALE_FACTOR_16384_LSB_g  = 16384,                  
SCALE_FACTOR_8192_LSB_g   = 8192 ,                   
SCALE_FACTOR_4096_LSB_g   = 4096 ,  
SCALE_FACTOR_2048_LSB_g   = 2048 ,                          			
}ICM20789_Accel_Scale_Factor;

				
			

ICM20789_Gyro_Fs_Sel Enum

This enum is used to select the Full Scale value of the Gyroscope sensor:

				
					typedef enum gyro_fs_sel
{ 	                               
 FS_250_DPS ,                    					
 FS_500_DPS ,                				
 FS_1000_DPS,    
 FS_2000_DPS                  						
}ICM20789_Gyro_Fs_Sel;

				
			

ICM20789_Gyro_Scale_Factor Enum

This enum is used to select the Scale Factor value of the Gyroscope sensor.

				
					typedef enum Gyro_Scale_Factor
{  
SCALE_FACTOR_131_LSB_DPS    = 131                  
SCALE_FACTOR_65p5_LSB_DPS   = 65,               
SCALE_FACTOR_32p8_LSB_DPS   = 32,                    
SCALE_FACTOR_16p4_LSB_DPS   = 16    			
}ICM20789_Gyro_Scale_Factor;

				
			

ICM20789_ FIFO_Size Enum

The sensor FIFO memory value is set by using the values of this enum:

				
					typedef enum FIFO_Size 
{  
_512_BYTE = 0 ,                                 
_1_KBYTE  = 1 ,                      
_2_KBYTE  = 2 ,                       
_4_KBYTE  = 3 ,                       
}ICM20789_FIFO_Size ;

				
			

ICM20789_FIFO_MODE Enum

The FIFO working mode of the sensor is set by using the values of this enum:

				
					typedef enum FIFO_Config
{  
STREAM_TO_FIFO      ,                          
STOP_ON_FULL_FIFO_SNAPSHOT = 1                                  
}ICM20789_FIFO_MODE ;

				
			

ICM20789_Ability Enum

The values of this enum are used to activate and deactivate different parts of the sensor:

				
					typedef enum Ability
{  
Disable = 0,                      
Enable     
}ICM20789_Ability;

				
			

ICM20789_Power_Mode Enum

The values of this enum are used to set the Power Mode of the sensor:

				
					typedef enum Power_Mode
{
ICM20789_LOW_NOISE   = 0,        						
ICM20789_LOW_POWER   = 1,			
ICM20789_SLEEP_OFF   = 2						              
} ICM20789_Power_Mode;

				
			

ICM20789_ GYRO_Averaging_Filter Enum

The values of this enum are used to determine the filter used in the Gyroscope sensor in Low Power mode:

				
					typedef enum
{
 GYRO_AVERAGE_1_SAMPLES_FILTER  = 0 ,										 
 GYRO_AVERAGE_2_SAMPLES_FILTER  = 1 , 										
 GYRO_AVERAGE_4_SAMPLES_FILTER  = 2 ,										
 GYRO_AVERAGE_8_SAMPLES_FILTER  = 3 ,                    
 GYRO_AVERAGE_16_SAMPLES_FILTER = 4 ,											 
 GYRO_AVERAGE_32_SAMPLES_FILTER = 5	,									  				 
 GYRO_AVERAGE_64_SAMPLES_FILTER = 6	,                     				
 GYRO_AVERAGE_128_SAMPLES_FILTER= 7	                      				  
} ICM20789_GYRO_Averaging_Filter;

				
			

ICM20789_ ACCEL_Averaging_Filter Enum

To determine the filter used in the Accelerometer sensor in Low Power mode, the values of this enum are used:

				
					typedef enum ACCEL_Averaging_Filter
{
 ACCEL_AVERAGE_4_SAMPLES_FILTER    = 0 ,                 		
 ACCEL_AVERAGE_8_SAMPLES_FILTER    = 1 ,			
 ACCEL_AVERAGE_16_SAMPLES_FILTER   = 2 ,				
 ACCEL_AVERAGE_32_SAMPLES_FILTER   = 3 			 
} ICM20789_ACCEL_Averaging_Filter;

				
			

ICM20789_Preparation Enum

This enum reflects the status of being ready or not for any data in the sensor:

				
					typedef enum Preparation
{  
IS_NOT_Ready = 0,                      
IS_Ready     
}ICM20789_Preparation;

				
			

ICM20789_Reset_Status Enum

The final status of the sensor software reset is expressed in this enum:

				
					typedef enum Reset_Status
{  
DONE = 0,                      
FAILED     
}ICM20789_Reset_Status;

				
			

ICM20789_FIFO_Ability Enum

This Enum is used to enable or disable FIFO:

				
					typedef enum FIFO_Ability
{  
FIFO_DISABLE = 0,                      
FIFO_ENABLE     
} ICM20789_FIFO_Ability;

				
			

ICM20789_Get_DATA Enum

How to receive data from the sensor is described in this enum:

				
					typedef enum Get_DATA
{  
FROM_REGISTER = 0,                      
FROM_FIFO     
} ICM20789_Get_DATA;

				
			

ICM20789_DMP_LP Enum

This Enum is used to enable or disable DMP in LOW POWER mode:

				
					typedef enum DMP_LP
{  
DMP_LOW_POWER = 0,                      
NOT_DMP_LOW_POWER     
} ICM20789_DMP_LP;

				
			

ICM20789_Sleep Enum

The values of this enum are used to set the sensor working mode:

				
					typedef enum Sleep
{
ICM20789_AWAKE   = 0,					
ICM20789_SLEEP                                  
}ICM20789_Sleep ;

				
			

ICM20789_Clock_Source Enum

The values of this enum are used to determine the clock of the sensor :

				
					typedef enum Clock_Source
{  
INTERNAL_20MHZ_OSCILLATOR = 0,                      
AUTO_SELECT               = 1,                    			
CLOCK_STOP                = 7                                        
}ICM20789_Clock_Source ;

				
			

ICM20789_Sensor Enum

To enable or disable each of the sensors, the values of this enum are used:

				
					typedef enum Sensor
{  
SENSOR_ENABLE   = 0 ,                                      			
SENSOR_DISABLE  = 7                                     
}ICM20789_Sensor ;

				
			

ICM20789_INT_Level Enum

To determine the basic logic level of Interrupt, the values of this enum are used:

				
					typedef enum int_level
{  
ACTIVE_HIGH = 0,                      
ACTIVE_LOW     
} ICM20789_INT_Level;

				
			

ICM20789_Latch_Type Enum

The values of this enum are used to determine the latch type of the Interrupt output:

				
					typedef enum latch_type
{  
_50_US = 0,                                        
HELD_STATUS_CLEAR     					
} ICM20789_Latch_Type;

				
			

ICM20789_INT_Type Enum

The values of this enum are used to determine the Interrupt output type:

				
					typedef enum int_type
{  
PUSH_PULL = 0,                      
OPEN_DRAIN     
}ICM20789_INT_Type;

				
			

ICM20789_FIFO_Overflow Enum

The values of this enum indicate FIFO overflows or not:

				
					typedef enum FIFO_Overflow
{  
FIFO_IS_NOT_OVERFLOW = 0,                      
FIFO_IS_OVERFLOW     = 1     
} ICM20789_FIFO_Overflow;

				
			

ICM20789_ Sample_Rate Enum

The values of this enum determine the value of the output data rate:

				
					typedef enum sample_rate
{  
_1_KHz   = 1000,                        
_4_KHz   = 4000,                    					
_8_KHz   = 8000,                                  
_32_KHz  = 32000
}ICM20789_Sample_Rate ;

				
			

ICM20789_ FCHOICEB Enum

To enable or disable the DLPF filter, the values of this enum are used:

				
					typedef enum FCHOICEB
{  
ENABLE_DLPF_FCHOICEB = 0,                      
BYPASS_DLPF_FCHOICEB = 1,                          
}ICM20789_FCHOICEB;

				
			

ICM20789_ Gyro_TEMP_DLPF Enum

The values of this enum are used to determine the DLPF filter in the gyroscope sensor:

				
					typedef enum Gyro_DLPF_CFG
{
ICM20789_GYRO_TEMP_DLPF_250     = 0, 								
ICM20789_GYRO_TEMP_DLPF_176	    = 1,								 		 
ICM20789_GYRO_TEMP_DLPF_92	    = 2, 								
ICM20789_GYRO_TEMP_DLPF_41	    = 3, 										
ICM20789_GYRO_TEMP_DLPF_20	    = 4, 											
ICM20789_GYRO_TEMP_DLPF_10	    = 5, 								
ICM20789_GYRO_TEMP_DLPF_5		= 6, 										
ICM20789_GYRO_TEMP_DLPF_3281	= 7 										
}ICM20789_GYRO_DLPF ;

				
			

ICM20789_ Accel_DLPF_CFG Enum

To determine the DLPF filter in the accelerometer sensor, the values of this enum are used:

				
					typedef enum Accel_DLPF_CFG
{
	ICM20789_ACCEL_DLPF_218	   = 1,								 
	ICM20789_ACCEL_DLPF_99	   = 2, 									
	ICM20789_ACCEL_DLPF_45	   = 3, 									
	ICM20789_ACCEL_DLPF_21	   = 4, 								
	ICM20789_ACCEL_DLPF_10	   = 5, 								
	ICM20789_ACCEL_DLPF_5	   = 6, 								
	ICM20789_ACCEL_DLPF_420    = 7 								
}ICM20789_ACCEL_DLPF ;

				
			

GebraBit_ICM20789 structure

All the information and configuration implemented on the sensor are stored in this “structure” and you can see the changes in each part of the sensor in the “Debug Session” environment.

Declaration of functions

At the end of this file, all the functions for reading and writing in ICM20789 registers, sensor configuration , FIFO and receiving data from the sensor are declared:

				
					/********************************************************
 *Declare Read&Write ICM20789 Register Values Functions *
 ********************************************************/
extern	uint8_t	GB_ICM20789_Read_Reg_Data ( uint8_t regAddr,uint8_t* data);
extern	uint8_t GB_ICM20789_Read_Reg_Bits (uint8_t regAddr,uint8_t start_bit, uint8_t len, uint8_t* data);
extern	uint8_t GB_ICM20789_Burst_Read(uint8_t regAddr,uint8_t *data, uint16_t byteQuantity);
extern	uint8_t GB_ICM20789_Write_Reg_Data(uint8_t regAddr, uint8_t data);
extern	uint8_t	GB_ICM20789_Write_Reg_Bits(uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t data);
extern	uint8_t GB_ICM20789_Burst_Write		( uint8_t regAddr,uint8_t *data, 	uint16_t byteQuantity);
/********************************************************
 *       Declare ICM20789 Configuration Functions       *
 ********************************************************/
extern void GB_ICM20789_Soft_Reset ( GebraBit_ICM20789 * ICM20789 );
extern void GB_ICM20789_Who_am_I(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_DMP(GebraBit_ICM20789* ICM20789 ,ICM20789_Ability dmp,ICM20789_DMP_LP dmp_lp);
extern void GB_ICM20789_DMP_Reset(GebraBit_ICM20789* ICM20789 ,ICM20789_Ability rst);
extern void GB_ICM20789_DMP_Interrupt(ICM20789_Ability interrupt);
extern void GB_ICM20789_Sleep_Awake (GebraBit_ICM20789 * ICM20789, ICM20789_Sleep  working  ) ;
extern void GB_ICM20789_ACCEL_Power_Mode(GebraBit_ICM20789* ICM20789 ,ICM20789_Power_Mode pmode);
extern void GB_ICM20789_GYRO_Power_Mode(GebraBit_ICM20789* ICM20789 ,ICM20789_Power_Mode pmode);
extern void GB_ICM20789_Set_Clock_Source(GebraBit_ICM20789 * ICM20789 , ICM20789_CLK clk) ;
extern void GB_ICM20789_Temperature(GebraBit_ICM20789* ICM20789 ,ICM20789_Ability temp);
extern void GB_ICM20789_Accelerometer(GebraBit_ICM20789 * ICM20789 , ICM20789_Sensor accel);
extern void GB_ICM20789_Gyroscope(GebraBit_ICM20789 * ICM20789 , ICM20789_Sensor gyro) ;
extern void GB_ICM20789_Set_INT_Pin(GebraBit_ICM20789 * ICM20789 , ICM20789_INT_Level level ,ICM20789_INT_Type type , ICM20789_Latch_Type latch );
extern ICM20789_Preparation GB_ICM20789_Check_Data_Preparation(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_GYRO_Full_Scale ( GebraBit_ICM20789 * ICM20789 , ICM20789_Gyro_Fs_Sel fs ) ;
extern void GB_ICM20789_GYRO_Low_Pass_Filter  (GebraBit_ICM20789 * ICM20789 ,  ICM20789_FCHOICEB bypass ) ;
extern void GB_ICM20789_GYRO_TEMP_Low_Pass_Filter_Value  (GebraBit_ICM20789 * ICM20789 , ICM20789_GYRO_TEMP_DLPF dlpf );
extern void GB_ICM20789_GYRO_LP_Averaging_Filter  (GebraBit_ICM20789 * ICM20789 , ICM20789_GYRO_Averaging_Filter avg );
extern void GB_ICM20789_GYRO_Output_Sample_Rate (GebraBit_ICM20789 * ICM20789 , uint16_t rate_hz);
extern void GB_ICM20789_ACCEL_Full_Scale ( GebraBit_ICM20789 * ICM20789 , ICM20789_Accel_Fs_Sel fs );
extern void GB_ICM20789_ACCEL_Low_Pass_Filter  (GebraBit_ICM20789 * ICM20789 ,  ICM20789_FCHOICEB bypass );
extern void GB_ICM20789_ACCEL_Low_Pass_Filter_Value  (GebraBit_ICM20789 * ICM20789 , ICM20789_ACCEL_DLPF dlpf );
extern void GB_ICM20789_ACCEL_LP_Averaging_Filter  (GebraBit_ICM20789 * ICM20789 , ICM20789_ACCEL_Averaging_Filter avg );
extern void GB_ICM20789_Output_Sample_Rate (GebraBit_ICM20789 * ICM20789 , uint16_t rate_hz);
extern void GB_ICM20789_FIFO_Overflow_Interrupt_Pin(GebraBit_ICM20789 * ICM20789 , ICM20789_Ability data_ovf_int);
extern void GB_ICM20789_Data_Ready_Interrupt_Pin(GebraBit_ICM20789 * ICM20789 , ICM20789_Ability data_ready_int);
/********************************************************
 *          Declare ICM20789 FIFO Functions             *
 ********************************************************/
extern void GB_ICM20789_Access_Serial_Interface_To_FIFO(GebraBit_ICM20789 * ICM20789 , ICM20789_Ability interface_access_fifo);
extern ICM20789_FIFO_Overflow GB_ICM20789_Check_FIFO_Overflow(GebraBit_ICM20789 * ICM20789) ;
extern void GB_ICM20789_Write_ACCEL_FIFO(GebraBit_ICM20789 * ICM20789 , ICM20789_Ability accel_fifo ) ;
extern void GB_ICM20789_Write_GYRO_FIFO(GebraBit_ICM20789 * ICM20789 , ICM20789_Ability gyro_fifo ) ;
extern void GB_ICM20789_Write_TEMP_FIFO(GebraBit_ICM20789 * ICM20789 , ICM20789_Ability temp_fifo );
extern void GB_ICM20789_FIFO_Size(GebraBit_ICM20789 * ICM20789 , ICM20789_FIFO_Size fifo_size );
extern void GB_ICM20789_FIFO_Mode(GebraBit_ICM20789 * ICM20789 , ICM20789_FIFO_Mode fifo_mode );
extern void GB_ICM20789_FIFO_Reset(void) ;
extern void GB_ICM20789_GET_FIFO_Count (GebraBit_ICM20789 * ICM20789 ) ;
extern void GB_ICM20789_Read_FIFO(GebraBit_ICM20789 * ICM20789 , uint16_t qty);
extern void GB_ICM20789_Get_ACCEL_GYRO_TEMP_From_FIFO(GebraBit_ICM20789 * ICM20789);
/********************************************************
 *          Declare ICM20789 DATA Functions             *
 ********************************************************/
extern void GB_ICM20789_Get_Temp_Register_Raw_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_Temp_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_GYRO_X_Register_Raw_DATA(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_GYRO_Y_Register_Raw_DATA(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_GYRO_Z_Register_Raw_DATA(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_GYRO_DATA_X_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_GYRO_DATA_Y_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_GYRO_DATA_Z_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_X_Register_Raw_DATA(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_Y_Register_Raw_DATA(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_Z_Register_Raw_DATA(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_DATA_X_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_DATA_Y_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_DATA_Z_Valid_Data(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_Temperature(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_XYZ_GYROSCOPE(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_XYZ_ACCELERATION(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_ACCEL_GYRO_TEMP_From_Registers(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20649_FIFO_Data_Partition_ACCEL_GYRO_XYZ_TEMP(GebraBit_ICM20789 * ICM20789);
extern void GB_ICM20789_Get_Data(GebraBit_ICM20789 * ICM20789 , ICM20789_Get_DATA get_data);
/********************************************************
 *          Declare ICM20789 HIGH LEVEL Functions       *
 ********************************************************/
extern void GB_ICM20789_FIFO_Configuration ( GebraBit_ICM20789 * ICM20789 , ICM20789_FIFO_Ability fifo );
extern void GB_ICM20789_Set_Power_Management(GebraBit_ICM20789 * ICM20789 , ICM20789_Power_Mode pmode) ;
extern void GB_ICM20789_initialize( GebraBit_ICM20789 * ICM20789 );
extern void GB_ICM20789_Configuration(GebraBit_ICM20789 * ICM20789, ICM20789_FIFO_Ability fifo);

				
			

GebraBit_ICM20789.c source file

In this file, which is written in C language, all the functions are commented in full detail, and all the parameters received in the arguments of the functions and their return values are clearly explained so we confine to these explanations and invite users to check this file directly for more information.

Sample program in Keil

So far, we have generated our Keil project using STM32CubeMX and added the GebraBit_ ICM20789.c library provided by GebraBit. Now let’s examine the main part of the sample tutorial, the main.c file and see the output of the GebraBit ICM20789 module in in the “watch” part in the the Keil compiler  “Debugging” environment.

Description of “main.c” file

If you look carefully at the beginning part of the “main.c” file, you will notice that the “GebraBit_ ICM20789.h” header has been added to access the structures and functions required by the GebraBit ICM20789 module. In the next part, a variable named ICM20789_Module of the GebraBit_ ICM20789 structure type (this structure is in the GebraBit_ICM20789 header and is explained in the GebraBit_ ICM20789 library description section) is defined for the configuration of the GebraBit ICM20789 module:  

				
					/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_ICM20789 ICM20789_Module;
/* USER CODE END PTD */

				
			

In the next part of the written code, the configuration and settings of the GebraBit ICM20789 module are done by using the GB_ICM20789_initialize() and GB_ ICM20789_Configuration() functions:

				
					GB_ICM20789_initialize( &ICM20789_Module );
GB_ICM20789_Configuration(&ICM20789_Module ,FIFO_ENABLE);
//GB_ICM20789_Configuration(&ICM20789_Module , FIFO_DISABLE );

				
			

And finally, in the “while” part of the program, the values of the GebraBit ICM20789  module in 3 axes X, Y, Z and temperature are continuously received:

				
					GB_ICM20789_Get_Data( &ICM20789_Module , FROM_FIFO );
//GB_ICM20789_Get_Data(  &ICM20789_Module , FROM_REGISTER  );

				
			

By removing the GB_ ICM20789_Configuration(&ICM20789_Module , FIFO_DISABLE ); and GB_ ICM20789_Get_Data( & ICM20789_Module , FROM_REGISTER ) functions; Data values can be read directly from the data registers.

The “main.c” file code text:

				
					/* USER CODE BEGIN Header */
/*
 * ________________________________________________________________________________________________________
 * Copyright (c) 2020 GebraBit Inc. All rights reserved.
 *
 * This software, related documentation and any modifications thereto (collectively “Software”) is subject
 * to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
 * and other intellectual property rights laws. 
 *
 * GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
 * and any use, reproduction, disclosure or distribution of the Software without an express license agreement
 * from GebraBit is strictly prohibited.
 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
 * NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN  
 * NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, 
 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THE SOFTWARE.
 * ________________________________________________________________________________________________________
 */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
	* @Author       	: Mehrdad Zeinali
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
//#include "i2c.h"
#include "spi.h"
#include "gpio.h"
#include "GebraBit_ICM20789.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
 
/* USER CODE END Includes */
 
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_ICM20789 ICM20789_Module;
/* USER CODE END PTD */
 
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
 
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
 
/* USER CODE END PM */
 
/* Private variables ---------------------------------------------------------*/
 
/* USER CODE BEGIN PV */
/* USER CODE END PV */
 
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
 
/* USER CODE END PFP */
 
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
 
/* USER CODE END 0 */
 
/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */
  /* USER CODE END 1 */
 
  /* MCU Configuration--------------------------------------------------------*/
 
  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();
 
  /* USER CODE BEGIN Init */
  
  /* USER CODE END Init */
 
  /* Configure the system clock */
  SystemClock_Config();
 
  /* USER CODE BEGIN SysInit */
 
  /* USER CODE END SysInit */
 
  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  //MX_I2C1_Init();
  MX_SPI1_Init();
	GB_ICM20789_initialize( &ICM20789_Module );
	GB_ICM20789_Configuration(&ICM20789_Module ,FIFO_ENABLE );
	//GB_ICM20789_Configuration(&ICM20789_Module , FIFO_DISABLE );
  /* USER CODE END 2 */
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
 
    /* USER CODE END WHILE */
    /* USER CODE BEGIN 3 */
		//GB_ICM20789_Get_Data(  &ICM20948_Module , FROM_REGISTER  );	
		GB_ICM20789_Get_Data(  &ICM20789_Module , FROM_FIFO  );	
 
  }
  /* USER CODE END 3 */
}
 
/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
 
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
 
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 
  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
  PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}
 
/* USER CODE BEGIN 4 */
 
/* USER CODE END 4 */
 
/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
 
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

				
			

Program output

After generating the Keil project using STM32CubeMX and adding the library, we connect the STLINK V2 programmer to the GebraBit STM32F303 using the STLINKV2 adapter:

STLINKV2 adapter:

By connecting the STLINK V2 programmer to the GebraBit STM32F303, there is no need to apply power to the GebraBit STM32F303 and GebraBit ICM20789 modules, because they receive their supply voltage directly from the STLINK V2 programmer.

finally, enter the “Debug” mode and by adding the “ICM20789_Module” to the “watch” window and running  the program, we can see the changes of temperature and the GebraBit ICM20789 module values  in the 3 axes( X, Y, Z) directly from the data registers and FIFO :

Receiving sensor data directly from data registers:

Receiving sensor data from FIFO:

In the following, you can download the “GebraBit ICM20789 module setup project” using the GebraBit STM32F303 module in the Keil environment, the “STM32CubeMX file”, the schematic of the modules and the “ICM20789 datasheet”.

Program output video

این مقاله را با دوستانتان به اشتراک بگذارید!

Leave a Reply

Your email address will not be published. Required fields are marked *

Shopping cart
Start typing to see posts you are looking for.

Sign in

No account yet?