What's the purpose of this project?
In this section, we are going to launch the IAM20680HP sensor using ARM microcontroller, STM32F series. In order to use more conveniently and optimally in this project, we use two ready modules GB303IM and GebraBit STM32F303. These two modules contain the minimum necessary elements of the IAM20680HP sensor and the STM32F microcontroller, which are provided by the GebraBit team to facilitate the work.
What are we going to learn in this tutorial?
In this tutorial, in addition to setting up and using the IAM20680HP sensor, you will get to know all the IAM20680HP sensor registers, how to set the various parts of the STM32 microcontroller to set up this sensor using the SPI protocol, how to use the GB303IM module specific library and driver file. You will also learn how to declare functions and finally receive sensor data in the Keil compiler.
What do we need to start this project?
As you probably know, we need some hardware and software to do this project. The titles of these hardware and software are provided to you in the table below and you can prepare/download by clicking on each of them and get ready to start.
Required hardware
|
Required software
|
---|---|
Keil compiler
|
|
STM32CubeMX program
|
|
ST-LINK/V2 programmer
|
To this end, select the SPI communication protocol using the on-board selector jumpers and place the GebraBit IAM20680HP module as Pin to Pin on the GebraBit STM32F303 module, as shown below:
Note: The above image is only an example of how the GebraBit IAM20680HP can be placed as pin to pin on the STM32F303 module. The user will therefore need to select the correct state of on-board selector jumpers when using SPI communication protocol.
Finally, we will see the values of temperature, acceleration and angular velocity in the three “X, Y, Z” axes in real time in the “Watch1” window of the Keil compiler in “Debug Session” mode.
STM32CubeMX settings
In the following, we review the settings related to each of the “SPI”, “RCC”, “Debug”, and “Clock” sections in the STM32F303 microcontroller to develop the GebraBit IAM20680HP module.
RCC settings
Since the GebraBit STM32F303 module has an 8MHz crystal, we choose the external clock in the “RCC” settings.
Debug & Programming settings
Since it is possible to access the “SWCLK” and “SWDIO” pins in the GebraBit STM32F303 module, to reduce the number of pins during “Debug&Programming” in the “SYS” block, we select the Serial Wire option in the “Debug” section:
SPI settings
Now, To communicate with the GebraBit STM32F303 module via SPI, we select the “Full Duplex Master” mode and select the PB3, PB4, and PB5 pins as SCK, MISO, and MOSI, and the PC13 pin as CS:
According to the sensor data sheet, the settings of the SPI parameters in the “Parameter Settings” section will be set as shown in the above image
Clock settings
In this code, the clock settings for each part of the STM32F303 microcontroller are as follows:
Project Manager settings
“Project Manager” settings are as follows, here we have used “MDK-ARM” version “5.32” compiler:
After completing all the above settings, we can develop our code easily just by one click on “GENERATE CODE” and adding the IAM20680HP library and driver (provided by GebraBit).
You can download the “STM32Cube MX”, “IAM20680HP library”, “driver” and KEIL project at the end of this tutorial.
IAM20680HP library and driver
In addition to the modular design of various sensors and ICs, GebraBit tries to provide variety of structured and hardware-independent libraries in C language for the ease of users in setting up and developing software.
For this purpose, after preparing each GebraBit module, the users can refer to the “toturial” section of the desired module and download the dedicated library, which contains the “ .h” and “ .c” file (Header and Source) and a sample training program under “GebraBit STM32F303”, “GebraBit ATMEGA32A” or “Arduino” development boards.
All the defined functions and structures in the library are commented in full detail and all the received parameters in the arguments of the functions and their return values, are briefly explained. Since the libraries are hardware independed. , the user can easily add the library in any of their favorite compilers and develop it by desired microcontroller and development board.
GebraBit IAM20680HP.h header file
In this file, based on the datasheet of the sensor or IC, all address registers, the values of each register are defined in the form of “Enumeration”. Also, the casing of the IAM20680HP sensor and the configurations related to each of the IAM20680HP sensor internal blocks are defined in the form of a “STRUCT” with the name GebraBit_ IAM20680HP. Finally, in the Debug Session environment, all the configurations related to each block can be seen in real time.
IAM20680HP _Interface Enum
This enum is used to select the communication protocol with the sensor:
typedef enum interface
{
NOT_SPI = 0,
IS_SPI
}IAM20680HP_Interface;
IAM20680HP_Accel_Fs_Sel Enum
This enum is used to select the Full Scale Range of the Accelerometer sensor:
typedef enum accel_fs_sel
{
FULL_SCALE_2g = 0 ,
FULL_SCALE_4g ,
FULL_SCALE_8g ,
FULL_SCALE_16g
}IAM20680HP_Accel_Fs_Sel;
IAM20680HP_Accel_Scale_Factor Enum
This enum is used to select the Scale Factor value of the Accelerometer sensor:
typedef enum Accel_Scale_Factor
{
SCALE_FACTOR_16384_LSB_g = 16384 ,
SCALE_FACTOR_8192_LSB_g = 8192 ,
SCALE_FACTOR_4096_LSB_g = 4096 ,
SCALE_FACTOR_2048_LSB_g = 2048
}IAM20680HP_Accel_Scale_Factor;
IAM20680HP_Gyro_Fs_Sel Enum
This enum is used to select the Full Scale value of the Gyroscope sensor:
typedef enum gyro_fs_sel
{
FS_250_DPS = 0 ,
FS_500_DPS ,
FS_1000_DPS ,
FS_2000_DPS
}IAM20680HP_Gyro_Fs_Sel;
IAM20680HP_Gyro_Scale_Factor Enum
This enum is used to select the Scale Factor value of the Gyroscope sensor.
typedef enum Gyro_Scale_Factor
{
SCALE_FACTOR_131_LSB_DPS = 131 ,
SCALE_FACTOR_65p5_LSB_DPS = 65 ,
SCALE_FACTOR_32p8_LSB_DPS = 32 ,
SCALE_FACTOR_16p4_LSB_DPS = 16
}IAM20680HP_Gyro_Scale_Factor;
IAM20680HP_FIFO_MODE Enum
The FIFO working mode of the sensor is set By using the values of this enum:
typedef enum FIFO_Config
{
BYPASS = 0 ,
STREAM_TO_FIFO ,
STOP_ON_FULL_FIFO_SNAPSHOT
}IAM20680HP_FIFO_MODE ;
IAM20680HP_Ability Enum
The values of this enum are used to activate and deactivate different parts of the sensor:
typedef enum Ability
{
Disable = 0,
Enable
}IAM20680HP_Ability;
IAM20680HP_Power_Mode Enum
The values of this enum are used to set the Power Mode of the sensor:
typedef enum Power_Mode
{
IAM20680HP_LOW_NOISE = 0,
IAM20680HP_LOW_POWER = 1,
IAM20680HP _SLEEP_OFF = 2
} IAM20680HP_Power_Mode;
IAM20680HP_ GYRO_Averaging_Filter Enum
The values of this enum are used to determine the filter used in the Gyroscope sensor in Low Power mode:
typedef enum
{
GYRO_AVERAGE_1_SAMPLES_FILTER = 0 ,
GYRO_AVERAGE_2_SAMPLES_FILTER = 1 ,
GYRO_AVERAGE_4_SAMPLES_FILTER = 2 ,
GYRO_AVERAGE_8_SAMPLES_FILTER = 3 ,
GYRO_AVERAGE_16_SAMPLES_FILTER = 4 ,
GYRO_AVERAGE_32_SAMPLES_FILTER = 5 ,
GYRO_AVERAGE_64_SAMPLES_FILTER = 6 ,
GYRO_AVERAGE_128_SAMPLES_FILTER = 7
} IAM20680HP_GYRO_Averaging_Filter;
IAM20680HP_ ACCEL_Averaging_Filter Enum
To determine the filter used in the Accelerometer sensor in Low Power mode, the values of this enum are used:
typedef enum ACCEL_Averaging_Filter
{
ACCEL_AVERAGE_4_SAMPLES_FILTER = 0 ,
ACCEL_AVERAGE_8_SAMPLES_FILTER = 1 ,
ACCEL_AVERAGE_16_SAMPLES_FILTER = 2 ,
ACCEL_AVERAGE_32_SAMPLES_FILTER = 3
} IAM20680HP_ACCEL_Averaging_Filter;
IAM20680HP_Preparation Enum
typedef enum Preparation
{
IS_NOT_Ready = 0,
IS_Ready
}IAM20680HP_Preparation;
IAM20680HP_Reset_Status Enum
typedef enum Reset_Status
{
FAILED = 0,
DONE
}IAM20680HP_Reset_Status;
IAM20680HP_FIFO_Ability Enum
This Enum is used to enable or disable FIFO:
typedef enum FIFO_Ability
{
FIFO_DISABLE = 0,
FIFO_ENABLE
} IAM20680HP_FIFO_Ability;
IAM20680HP_Get_DATA Enum
How to receive data from the sensor is described in this enum:
typedef enum Get_DATA
{
FROM_REGISTER = 0,
FROM_FIFO
} IAM20680HP_Get_DATA;
IAM20680HP_Sleep Enum
The values of this enum are used to set the sensor working mode:
typedef enum Sleep
{
IAM20680HP_AWAKE = 0 ,
IAM20680HP_SLEEP
}IAM20680HP_Sleep ;
IAM20680HP_Clock_Source Enum
The values of this enum are used to determine the sensor clock :
typedef enum Clock_Source
{
INTERNAL_20MHZ_OSCILLATOR = 0,
AUTO_SELECT = 1,
CLOCK_STOP = 7
}IAM20680HP_Clock_Source ;
IAM20680HP_Sensor Enum
To enable or disable each of the sensors, the values of this enum are used:
typedef enum Sensor
{
SENSOR_ENABLE = 0,
SENSOR_DISABLE = 7
}IAM20680HP_Sensor ;
IAM20680HP_INT_Level Enum
The values of this enum are used to determine the basic logic level of Interrupt:
typedef enum int_level
{
ACTIVE_HIGH = 0,
ACTIVE_LOW
} IAM20680HP_INT_Level;
IAM20680HP_Latch_Type Enum
The values of this enum are used to determine the latch type of the Interrupt output:
typedef enum latch_type
{
_50_US = 0,
HELD_STATUS_CLEAR
} IAM20680HP_Latch_Type;
IAM20680HP_INT_Type Enum
The values of this enum are used to determine the Interrupt output type:
typedef enum int_type
{
PUSH_PULL = 0,
OPEN_DRAIN
}IAM20680HP_INT_Type;
IAM20680HP_FIFO_Overflow Enum
The values of this enum indicate FIFO overflows or not:
typedef enum FIFO_Overflow
{
FIFO_IS_NOT_OVERFLOW = 0,
FIFO_IS_OVERFLOW = 1
} IAM20680HP_FIFO_Overflow;
IAM20680HP_FIFO_Size Enum
The values of this enum specify the amount of FIFO capacity:
typedef enum FIFO_Size
{
_512_BYTE = 0 ,
_1_KBYTE = 1 ,
_2_KBYTE = 2 ,
_4_KBYTE = 3 ,
}IAM20680HP_FIFO_Size ;
IAM20680HP_ FCHOICEB Enum
To enable or disable the DLPF filter, the values of this enum are used:
typedef enum FCHOICEB
{
ENABLE_DLPF_FCHOICEB = 0,
BYPASS_DLPF_FCHOICEB = 1,
}IAM20680HP_FCHOICEB;
IAM20680HP _ Sample_Rate Enum
The values of this enum are used to determine the sensor output data rate:
typedef enum sample_rate
{
_1_KHz = 1000,
_4_KHz = 4000,
_8_KHz = 8000,
_32_KHz = 32000
}IAM20680HP_Sample_Rate ;
IAM20680HP_ GYRO_TEMP_DLPF Enum
To determine the DLPF filter in temperature and gyroscope sensors, the values of this enum are used:
typedef enum GYRO_TEMP_DLPF
{
IAM20680HP_GYRO_TEMP_DLPF_250 = 0,
IAM20680HP_GYRO_TEMP_DLPF_176 = 1,
IAM20680HP_GYRO_TEMP_DLPF_92 = 2,
IAM20680HP_GYRO_TEMP_DLPF_41 = 3,
IAM20680HP_GYRO_TEMP_DLPF_20 = 4,
IAM20680HP_GYRO_TEMP_DLPF_10 = 5,
IAM20680HP_GYRO_TEMP_DLPF_5 = 6,
IAM20680HP_GYRO_TEMP_DLPF_3281 = 7
}IAM20680HP_GYRO_TEMP_DLPF ;
IAM20680HP_ Accel_DLPF_CFG Enum
To determine the DLPF filter in the accelerometer sensor, the values of this enum are used:
typedef enum Accel_DLPF_CFG
{
IAM20680HP_ACCEL_DLPF_218 = 1,
IAM20680HP_ACCEL_DLPF_99 = 2,
IAM20680HP_ACCEL_DLPF_45 = 3,
IAM20680HP_ACCEL_DLPF_21 = 4,
IAM20680HP_ACCEL_DLPF_10 = 5,
IAM20680HP_ACCEL_DLPF_5 = 6,
IAM20680HP_ACCEL_DLPF_420 = 7
}IAM20680HP_ACCEL_DLPF ;
GebraBit_ IAM20680HP structure
Declaration of functions
At the end of this file, all the functions for reading and writing in IAM20680HP registers, sensor configuration , FIFO and receiving data from the sensor are declared:
/********************************************************
*Declare Read&Write IAM20680HP Register Values Functions *
********************************************************/
extern uint8_t GB_IAM20680HP_Read_Reg_Data ( uint8_t regAddr,uint8_t* data);
extern uint8_t GB_IAM20680HP_Read_Reg_Bits (uint8_t regAddr,uint8_t start_bit, uint8_t len, uint8_t* data);
extern uint8_t GB_IAM20680HP_Burst_Read(uint8_t regAddr,uint8_t *data, uint16_t byteQuantity);
extern uint8_t GB_IAM20680HP_Write_Reg_Data(uint8_t regAddr, uint8_t data);
extern uint8_t GB_IAM20680HP_Write_Reg_Bits(uint8_t regAddr, uint8_t start_bit, uint8_t len, uint8_t data);
extern uint8_t GB_IAM20680HP_Burst_Write ( uint8_t regAddr,uint8_t *data, uint16_t byteQuantity);
/********************************************************
* Declare IAM20680HP Configuration Functions *
********************************************************/
extern void GB_IAM20680HP_Soft_Reset ( GebraBit_IAM20680HP * IAM20680HP );
extern void GB_IAM20680HP_Who_am_I(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Select_SPI4_Interface(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Interface spisel);
extern void GB_IAM20680HP_Sleep_Awake (GebraBit_IAM20680HP * IAM20680HP, IAM20680HP_Sleep working ) ;
extern void GB_IAM20680HP_ACCEL_Power_Mode(GebraBit_IAM20680HP* IAM20680HP ,IAM20680HP_Power_Mode pmode);
extern void GB_IAM20680HP_GYRO_Power_Mode(GebraBit_IAM20680HP* IAM20680HP ,IAM20680HP_Power_Mode pmode);
extern void GB_IAM20680HP_Set_Clock_Source(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_CLK clk) ;
extern void GB_IAM20680HP_Temperature(GebraBit_IAM20680HP* IAM20680HP ,IAM20680HP_Ability temp);
extern void GB_IAM20680HP_Accelerometer(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Sensor accel);
extern void GB_IAM20680HP_Gyroscope(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Sensor gyro) ;
extern void GB_IAM20680HP_Set_INT_Pin(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_INT_Level level ,IAM20680HP_INT_Type type , IAM20680HP_Latch_Type latch );
extern IAM20680HP_Preparation GB_IAM20680HP_Check_Data_Preparation(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_GYRO_Full_Scale ( GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Gyro_Fs_Sel fs ) ;
extern void GB_IAM20680HP_GYRO_Low_Pass_Filter (GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_FCHOICEB bypass ) ;
extern void GB_IAM20680HP_GYRO_TEMP_Low_Pass_Filter_Value (GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_GYRO_TEMP_DLPF dlpf );
extern void GB_IAM20680HP_GYRO_LP_Averaging_Filter (GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_GYRO_Averaging_Filter avg );
extern void GB_IAM20680HP_GYRO_Output_Sample_Rate (GebraBit_IAM20680HP * IAM20680HP , uint16_t rate_hz);
extern void GB_IAM20680HP_ACCEL_Full_Scale ( GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Accel_Fs_Sel fs );
extern void GB_IAM20680HP_ACCEL_Low_Pass_Filter (GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_FCHOICEB bypass );
extern void GB_IAM20680HP_ACCEL_Low_Pass_Filter_Value (GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_ACCEL_DLPF dlpf );
extern void GB_IAM20680HP_ACCEL_LP_Averaging_Filter (GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_ACCEL_Averaging_Filter avg );
extern void GB_IAM20680HP_Output_Sample_Rate (GebraBit_IAM20680HP * IAM20680HP , uint16_t rate_hz);
extern void GB_IAM20680HP_FIFO_Overflow_Interrupt(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Ability data_ovf_int);
extern void GB_IAM20680HP_Data_Ready_Interrupt(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Ability data_ready_int);
/********************************************************
* Declare IAM20680HP FIFO Functions *
********************************************************/
extern void GB_IAM20680HP_Access_Serial_Interface_To_FIFO(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Ability interface_access_fifo);
extern IAM20680HP_FIFO_Overflow GB_IAM20680HP_Check_FIFO_Overflow(GebraBit_IAM20680HP * IAM20680HP) ;
extern void GB_IAM20680HP_Write_ACCEL_FIFO(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Ability accel_fifo ) ;
extern void GB_IAM20680HP_Write_GYRO_FIFO(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Ability gyro_fifo ) ;
extern void GB_IAM20680HP_Write_TEMP_FIFO(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Ability temp_fifo );
extern void GB_IAM20680HP_FIFO_Mode(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_FIFO_Mode fifo_mode );
extern void GB_IAM20680HP_FIFO_Reset(void) ;
extern void GB_IAM20680HP_GET_FIFO_Count (GebraBit_IAM20680HP * IAM20680HP ) ;
extern void GB_IAM20680HP_Read_FIFO(GebraBit_IAM20680HP * IAM20680HP , uint16_t qty);
extern void GB_IAM20680HP_Get_ACCEL_GYRO_TEMP_From_FIFO(GebraBit_IAM20680HP * IAM20680HP);
/********************************************************
* Declare IAM20680HP DATA Functions *
********************************************************/
extern void GB_IAM20680HP_Get_Temp_Register_Raw_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_Temp_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_GYRO_X_Register_Raw_DATA(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_GYRO_Y_Register_Raw_DATA(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_GYRO_Z_Register_Raw_DATA(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_GYRO_DATA_X_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_GYRO_DATA_Y_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_GYRO_DATA_Z_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_X_Register_Raw_DATA(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_Y_Register_Raw_DATA(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_Z_Register_Raw_DATA(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_DATA_X_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_DATA_Y_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_DATA_Z_Valid_Data(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_Temperature(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_XYZ_GYROSCOPE(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_XYZ_ACCELERATION(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_ACCEL_GYRO_TEMP_From_Registers(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_ICM20649_FIFO_Data_Partition_ACCEL_GYRO_XYZ_TEMP(GebraBit_IAM20680HP * IAM20680HP);
extern void GB_IAM20680HP_Get_Data(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Get_DATA get_data);
/********************************************************
* Declare IAM20680HP HIGH LEVEL Functions *
********************************************************/
extern void GB_IAM20680HP_FIFO_Configuration ( GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_FIFO_Ability fifo );
extern void GB_IAM20680HP_Set_Power_Management(GebraBit_IAM20680HP * IAM20680HP , IAM20680HP_Power_Mode pmode) ;
extern void GB_IAM20680HP_initialize( GebraBit_IAM20680HP * IAM20680HP );
extern void GB_IAM20680HP_Configuration(GebraBit_IAM20680HP * IAM20680HP, IAM20680HP_FIFO_Ability fifo);
GebraBit_IAM20680HP.c source file
In GebraBit_IAM20680HP.c source file, which is written in C language, all the functions are commented in full detail, and all the parameters received in the arguments of the functions and their return values are clearly explained so we confine to these explanations and invite users to check this file directly for more information.
Sample program in Keil
After making the Keil project by STM32CubeMX and adding the “GebraBit_ IAM20680HP.c” library provided by GebraBit, we will examine the “main .c” file of the sample tutorial and view the output of the GebraBit_IAM20680 module in the “watch” part in the the Keil compiler “Debugging” environment.
Description of “main.c” file
If you look carefully at the beginning part of the “main.c” file, you will notice that the “GebraBit_ IAM20680HP.h” header has been added to access the structures and functions required by the GebraBit IAM20680HP module. In the next part, a variable named IAM20680HP_Module of the GebraBit_ IAM20680HP structure type (this structure is in the GebraBit_ IAM20680HP header and is explained in the GebraBit_ IAM20680HP library description section) is defined for the configuration of the GebraBit IAM20680HP module:
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
GebraBit_IAM20680HP IAM20680HP_Module;
/* USER CODE END PTD */
In the next part of the written code, the configuration and settings of the GebraBit IAM20680HP module are done by using the GB_ IAM20680HP_initialize() and GB_ IAM20680HP_Configuration() functions:
GB_IAM20680HP_Initialize( &IAM20680HP_Module );
GB_IAM20680HP_Configuration(&IAM20680HP_Module ,FIFO_ENABLE);
//GB_IAM20680HP_Configuration(&IAM20680HP_Module , FIFO_DISABLE );
And finally, in the “while” part of the program, the values of the GebraBit IAM20680HP module in 3 axes X, Y, Z and temperature are continuously received:
GB_IAM20680HP_Get_Data( &IAM20680HP_Module , FROM_FIFO );
//GB_IAM20680HP_Get_Data( &IAM20680HP_Module , FROM_REGISTER );
By removing the GB_ IAM20680HP_Configuration(&IAM20680HP_Module , FIFO_DISABLE ); and GB_ IAM20680HP_Get_Data( & IAM20680HP_Module , FROM_REGISTER ) functions; Data values can be read directly from the data registers.
The “main.c” file code text:
/* USER CODE BEGIN Header */
/*
* ________________________________________________________________________________________________________
* Copyright (c) 2020 GebraBit Inc. All rights reserved.
*
* This software, related documentation and any modifications thereto (collectively “Software”) is subject
* to GebraBit and its licensors' intellectual property rights under U.S. and international copyright
* and other intellectual property rights laws.
*
* GebraBit and its licensors retain all intellectual property and proprietary rights in and to the Software
* and any use, reproduction, disclosure or distribution of the Software without an express license agreement
* from GebraBit is strictly prohibited.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
* NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT IN
* NO EVENT SHALL GebraBit BE LIABLE FOR ANY DIRECT, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
* OF THE SOFTWARE.
* ________________________________________________________________________________________________________
*/
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
* @Author : Mehrdad Zeinali
******************************************************************************
* @attention
*
* Copyright (c) 2022 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
//#include "i2c.h"
#include "spi.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "GebraBit_IAM20680HP.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
extern GebraBit_IAM20680HP IAM20680HP_Module;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
//MX_I2C1_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
GB_IAM20680HP_initialize(&IAM20680HP_Module);
//GB_IAM20680HP_Configuration(&IAM20680HP_Module , FIFO_ENABLE );
GB_IAM20680HP_Configuration(&IAM20680HP_Module , FIFO_DISABLE );
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//GB_IAM20680HP_Get_Data( &IAM20680HP_Module , FROM_FIFO );
GB_IAM20680HP_Get_Data( &IAM20680HP_Module , FROM_REGISTER );
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_I2C1;
PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_SYSCLK;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Program output
After generating the Keil project using STM32CubeMX and adding the library, we connect the STLINK V2 programmer to the GebraBit STM32F303 using the STLINKV2 adapter:
STLINKV2 adapter:
By connecting the STLINK V2 programmer to the GebraBit STM32F303, there is no need to apply power to the GebraBit STM32F303 and GebraBit IAM20680HP modules, because they receive their supply voltage directly from the STLINK V2 programmer.
finally, enter the “Debug” mode and by adding the “IAM20680HP_Module” to the “watch” window and running the program, we can see the changes of temperature and the GebraBit IAM20680HP module values in the 3 axes( X, Y, Z) directly from the data registers and FIFO :
Receiving sensor data directly from data registers:
Receiving sensor data from FIFO:
In the following, you can download the “GebraBit IAM20680HP module setup project” using the GebraBit STM32F303 module in the Keil environment, the “STM32CubeMX file”, the schematic of the modules and the “IAM20680HP datasheet”.